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Abstract—In the present study we consider spherical
product surfaces 𝑋 = 𝛼 ⊗ 𝛽 of two 2D curves in 𝐸3. We
prove that if a spherical product surface patch 𝑋 = 𝛼 ⊗ 𝛽
has vanishing Gaussian curvature 𝐾 (i.e. a flat surface) then
either 𝛼 or 𝛽 is a straight line. Further, we prove that if
𝛼(𝑢) is a straight line and 𝛽(𝑣) is a 2𝐷 curve then the
spherical product is a non-minimal and flat surface. We
also prove that if 𝛽(𝑣) is a straight line passing through
origin and 𝛼(𝑢) is any 2𝐷 curve (which is not a line) then
the spherical product is both minimal and flat. We also give
some examples of spherical product surface patches with
potential applications to visual cyberworlds.

Keywords-spherical product surface; minimal surfaces;
function based geometry modelling;

I. INTRODUCTION

The problem of constructing geometry of objects which
resemble real world objects is important in many areas
of computer graphics and computer vision. These include
robotics, medical image analysis and the automatic con-
struction of virtual environments. In the last 30 years,
much effort has been focussed in finding suitable methods
representing objects from 3D data. This work has largely
proposed the use of some form of parametric models, most
commonly spherical product of two 2D curves.

Quadrics are the simplest type of spherical products.
In fact, the first dedicated part-level models in computer
vision were generalized cylinders [3]. Superquadrics can
be also considered as spherical product of two 2𝐷 curves
which are known as superconics. In fact, superquadrics are
solid models that posses fairly simple parametrization and
can represent a large variety of standard geometric solids,
as well as smooth shapes in between. This makes them
much more convenient for representing rounded, blob-
like geometry which resemble common objects formed by
natural processes [12].

Petland was first who grasped the potential of the
superquadratic models and parametric deformations for
modelling natural shapes in the context of computer vi-
sion [17]. He proposed to use superquadrics models, in

combination with global deformations. This was proposed
as a set of primitives which can be molded like clay
which can be intuitive for the user. For example, Petland
presented several perceptual and recognizable arguments
to recover the scene structure at such a part-level. He
proposed superquadrics in combination with deformations
as a shape vocabulary for such part-level representation.

The superquadrics, which are like phonemes in this
description can be deformed by stretching, bending, taper-
ing or twisting and then can be combined using Boolean
operations to build complex objects ([12], pp. 9). The
study of superquadric model started in isolation from
specific vision applications ([17], [4], [19]). It can be
observed that superquadric recovery can be integrated with
segmentation ([18], [11], [14]) as well as with decision
making such as categorization [13]. Superquadrics are the
special case of the supershapes, developed by Gielis and
et al. [8] that have the advantage of representing polygonal
geometry with various symmetries.

The rest of the paper is organized as follows. Section II
provides a formal definition of spherical product surfaces
and superquadrics with global parametrization. Section III
presents the original results of spherical product surface
patches of flat or minimal type and results of deforma-
tions of the spherical product surface patches. Section IV
provides some examples and finally, Section V concludes
the paper.

II. SPHERICAL PRODUCT SURFACES IN 𝐸3

Let 𝛼, 𝛽 : 𝑅 −→ 𝐸2 be two Euclidean planar
curves. Assume 𝛼(𝑢) = (𝑓1(𝑢), 𝑓2(𝑢)) and 𝛽(𝑣) =
(𝑔1(𝑣), 𝑔2(𝑣)). Then their spherical product immersion is
given by,

𝑋 = 𝛼⊗ 𝛽 : 𝐸2 −→ 𝐸3; (1)

𝑋(𝑢, 𝑣) = (𝑓1(𝑢), 𝑓2(𝑢)𝑔1(𝑣), 𝑓2(𝑢)𝑔2(𝑣)),

𝑢0 < 𝑢 < 𝑢1, 𝑣0 < 𝑣 < 𝑣1, which is a surface in 𝐸3

[12]. Each 2𝐷 curve has one degree of freedom, so the
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resultant surface has 2 degrees of freedom. By adding a
scaling term to each spatial direction, we achieve a form
of with 5 degrees of freedom,

𝑋(𝑢, 𝑣) = (𝑎1𝑓1(𝑢), 𝑎2𝑓2(𝑢)𝑔1(𝑣), 𝑎3𝑓2(𝑢)𝑔2(𝑣)). (2)

We can think of the function 𝛽 as horizontal curve
which is swept vertically according to the function 𝛼.
Further, 𝑓1(𝑢) scales 𝛽 while 𝑓2(𝑢) defines the vertical
sweeping motion. In this way we see that the parameter
𝑣 attaches the surface horizontally, while 𝑢 attaches the
surface vertically [2]. For the case 𝛽(𝑣) is a unit circle
one can get a parametrization of a surface of revolution,

𝑋(𝑢, 𝑣) = (𝑓1(𝑢), 𝑓2(𝑢) cos 𝑣, 𝑓2(𝑢) sin 𝑣). (3)

Quadratic surfaces occur frequently in the design of
discrete piece parts in mechanical CAD/CAM. Solid mod-
eling systems based on quadratic surfaces must be able to
allow the underlying surface to be partitioned [16]. The
quadratic surface can also be represented in an explicit
way using spherical product of two 2D curves [12]. Some
examples are listed in Table 1 ([15]).

A. Superquadrics

The circle and square, ellipse and rectangle are all
members of the set of superellipses defined by,

∣∣∣∣𝑥1𝑎1
∣∣∣∣

2
𝜖2

+

∣∣∣∣𝑥2𝑎2
∣∣∣∣

2

𝜖2

= 1, (4)

where the lengths of the axes are given by 𝑎1 and 𝑎2 and
the squareness is determined by 𝜖 [6]. Superellipse was
developed as a popular tool by Piet Hein and has been
used for shape design by architects and furniture designers
[5]. The solutions of Equation (2) can be parameterized
as, [

𝑥1(𝑣)
𝑥2(𝑣)

]
=

[
𝑎1 cos

𝜖2 𝑣
𝑎2 sin

𝜖2 𝑣

]
− 𝜋 ≤ 𝑣 < 𝜋. (5)

Superquadrics [12] are a family of parametric solids
derived from the basic quadric surfaces and solids. Extra
flexibility in shape representation is achieved by raising
each trigonometric term in the quadric equations to an
exponent. These exponents control the relative roundness
and squareness along the major axes of the surface. By
altering the value of the exponents, a wide range of forms
may be generated. e.g. spheres, cylinders. parallelepipeds,
pinched stars and the shapes in between. Superquadrics are
a family of shapes that includes not only superellipsoids,
but also superhyperboloids of one piece and superhyper-
boloids of two pieces as well as supertoroids.

In computer vision literature, it is common to refer to
superellipsoids by the more generic term of superquadrics.
The following position vector 𝑋 defines a superquadric
surface,

(a) (b) (c)

(d) (e) (f)

Figure 1. Superquadric shapes varying 𝜖1, 𝜖2. (a) 𝜖1 = 𝜖2 =
0.1, (𝑏)𝜖1 = 𝜖2 = 0.5, (𝑐)𝜖1 = 𝜖2 = 1, (d) 𝜖1 = 3, 𝜖2 = 1, (𝑒)𝜖1 =
1, 𝜖2 = 3, (𝑓)𝜖1 = 𝜖2 = 3.

𝑋(𝑢, 𝑣) = 𝛼(𝑢)⊗ 𝛽(𝑣) (6)

=

[
𝑎1 sin

𝜖1 𝑢
cos𝜖1 𝑢

]
⊗
[
𝑎2 cos

𝜖2 𝑣
𝑎3 sin

𝜖2 𝑣

]

=

⎡
⎣ 𝑎1 sin

𝜖1 𝑢
𝑎2 cos

𝜖1 𝑢 cos𝜖2 𝑣
𝑎3 cos

𝜖1 𝑢 sin𝜖2 𝑣

⎤
⎦ ,

where −𝜋
2 < 𝑢 <

𝜋
2 and −𝜋 ≤ 𝑣 < 𝜋.

Superquadric is a well-known part-level model in the
field of computer vision and graphics. Being an extension
of the quadric surfaces the superquadric incorporates two
shapes control parameters 𝜖1 and 𝜖2 to adjust the curvature
of the surface (see, [1], [12] and [12]). When 𝜖1, 𝜖2
vary, the shape smoothly changes. In the special case
𝜖1= 𝜖2 = 1, the superquadric degenerates to a common
ellipsoid (see, Figure 1).

By eliminating parameter 𝑢 and 𝑣 using equality
𝑐𝑜𝑠2𝛼+ 𝑠𝑖𝑛2𝛼 = 1, the following implicit equation,⎛

⎝∣∣∣∣𝑥2𝑎2
∣∣∣∣

2
𝜖2

+

∣∣∣∣𝑥3𝑎3
∣∣∣∣

2

𝜖2

⎞
⎠

𝜖2
𝜖1

+

∣∣∣∣𝑥1𝑎1
∣∣∣∣

2
𝜖1

= 1. (7)

can be obtained.

B. Supershapes

Supershapes have been recently presented by Gielis
([6],[8]) as an extension of superquadrics deriving from
superellipse representation. Here a term 𝑚𝜃

4 , 𝑚 ∈ 𝑅+,
is introduced to allow a rational or irrational number of
symmetry and three shape coefficients are considered. The
radius 𝑟 of a polygon is defined by,

𝑟(𝜃) =
1(∣∣∣ cos(𝑚𝜃)

𝑎1

∣∣∣𝑛2

+
∣∣∣ sin(𝑚𝜃)

𝑎2

∣∣∣𝑛3
) 1

𝑛1

, (8)

with 𝑎1, 𝑎2, 𝑛𝑖 ∈ 𝑅+ and 𝑚 ∈ 𝑅+∗ . Parameters 𝑎1 > 0
and 𝑎2 > 0 controlling the size of the polygon, defines
the number of symmetry axes and can also be seen as the
number of sectors in which the plane is folded. When𝑚 is
a natural number, non-self-intersecting closed curves are
obtained. For 𝑛1 = 𝑛2 = 𝑛3 = 2 and 𝑚 = 4 in Equation
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𝛼(𝑢) 𝛽(𝑣) 𝑋(𝑢, 𝑣) = 𝛼⊗ 𝛽
circle with radius 𝑟 circle radius 𝑟, g1(v)≥0 sphere with radius 𝑟
circle line 𝑥 = 𝑥𝑐𝑜𝑛𝑠𝑡 > 0 cylinder
circle line cone
circle eclipse with 𝑔1(𝑣) ≥ 0 rotation ellipsoid
ellipse, parabola or hyperbola line 𝑥 = 𝑥𝑐𝑜𝑛𝑠𝑡 > 0 elliptic, parabolic or hyperbolic cylinder
ellipse line elliptic cone
ellipse ellipse with 𝑔1(𝑣) ≥ 0 ellipsoid
ellipse ellipse with centre 𝑥 ≥ 𝑎𝑔 toroid
ellipse one sheeted hyperbola one sheeted hyperboloid
hyperbola one sheeted hyperbola two sheeted hyperboloid
ellipse or hyperbola parabola1 with 𝑔1(𝑣) ≥ 0 elliptic or hyperbolic paraboloid

Table 1. Some quadrics defined as spherical products.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Examples of various abstract shapes. (a) and (c) 𝑛1 = 𝑛2 =
𝑛3 = 1

3
, (b) and (e) 𝑛1 = 10, 𝑛2 = 𝑛3 = 20, (d) and (f) 𝑛1 =

3, 𝑛2 = 𝑛3 = 1
3

.

(8), an ellipse is obtained. One can find in nature a variety
of interesting shapes that may possibly be described by the
formula (8).

When combined with another function 𝑓(𝜃), the Su-
performula will modify these functions and all associated
graphs (Eq. 9),

𝜌(𝜃) =
𝑓(𝜃)(∣∣∣ cos(𝑚𝜃)

𝑎

∣∣∣𝑛2

+
∣∣∣ sin(𝑚𝜃)

𝑎

∣∣∣𝑛3
) 1

𝑛1

. (9)

The function 𝑓(𝜃) may be considered as a modifier of
the Gielis function, 𝑟(𝜃) [9]. Functions 𝑓(𝜃) may be
for example, constant functions ((8) = (9)), exponential

functions, spiral functions and trigonometric functions
([6], [7]).

This generic equation generates a large class of su-
pershapes and subshapes, including the supercircles and
subcircles as special cases. Gielis therefore proposed the
name Superformula for Equation (9) based on the notion
of supercircles, superellipses and superquadrics.

Thus, supershapes have been recently presented by
Gielis [6], [8] as an extension of superquadrics. A con-
sidered parametric equation of supershapes can be written
as,

𝑋(𝑢, 𝑣) = 𝛼(𝑢)⊗ 𝛽(𝑣) = (10)[
𝑟1(𝑢) sin𝑢
𝑟1(𝑢) cos𝑢

]
⊗
[
𝑟2(𝑣) cos 𝑣
𝑟2(𝑣) sin 𝑣

]

=

⎡
⎣ 𝑟1(𝑢) sin𝑢
𝑟1(𝑢)𝑟2(𝑣) cos 𝑢 cos 𝑣
𝑟1(𝑢)𝑟2(𝑣) cos𝑢 sin 𝑣

⎤
⎦ ,

where −𝜋
2 < 𝑢 <

𝜋
2 and −𝜋 ≤ 𝑣 < 𝜋.

A unit supershape (𝑎 = 𝑏 = 1) is defined by 8 shape
parameters denoted {𝑚, 𝑛1, 𝑛2, 𝑛3, �̃�, �̃�1, �̃�2, �̃�3}, where
𝑛𝑖 and �̃�𝑖 are used in 𝑟1(𝑢) and 𝑟2(𝑣) respectively [8].

III. MAIN RESULTS

We recall definitions and results of [10].
Let 𝛼, 𝛽 : 𝑅 −→ 𝐸2 be two Euclidean planar

curves. Assume 𝛼(𝑢) = (𝑓1(𝑢), 𝑓2(𝑢)) and 𝛽(𝑣) =
(𝑔1(𝑣), 𝑔2(𝑣)). Then their spherical product immersion is
given by,

𝑋 = 𝛼⊗ 𝛽 : 𝐸2 −→ 𝐸3, (11)

𝑋(𝑢, 𝑣) = (𝑓1(𝑢), 𝑓2(𝑢)𝑔1(𝑣), 𝑓2(𝑢)𝑔2(𝑣)),

which is a surface in 𝐸3.
The tangent space of 𝑋(𝑢, 𝑣) is spanned by the vector

fields,

𝑋𝑢(𝑢, 𝑣) = (𝑓1
′(𝑢), 𝑓2′(𝑢)𝑔1(𝑣), 𝑓2′(𝑢)𝑔2(𝑣)),(12)

𝑋𝑣(𝑢, 𝑣) = (0, 𝑓2(𝑢)𝑔1
′(𝑣), 𝑓2(𝑢)𝑔2

′(𝑣)), (13)

where 𝑓 ′ means the derivative of 𝑓 .
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Hence, the coefficients of the first fundamental form of
the surface are,

𝐸 =< 𝑋𝑢(𝑢, 𝑣), 𝑋𝑢(𝑢, 𝑣) > (14)

= (𝑓1
′
(𝑢))2 + (𝑓2

′
(𝑢))2 ∥(𝛽(𝑣))∥2

𝐹 =< 𝑋𝑢(𝑢, 𝑣), 𝑋𝑣(𝑢, 𝑣) > (15)

= 𝑓2(𝑢)𝑓2
′
(𝑢) < 𝛽(𝑣), 𝛽

′
(𝑣) >

𝐺 =< 𝑋𝑣(𝑢, 𝑣), 𝑋𝑣(𝑢, 𝑣) > (16)

= (𝑓2(𝑢))
2
∥∥∥𝛽′

(𝑣)
∥∥∥2

,

where ⟨, ⟩ is the standard scalar product in 𝐸3.
For a regular patch 𝑋(𝑢, 𝑣) the unit normal vector field

or surface normal 𝑁 is defined by,

𝑁(𝑢, 𝑣) =
𝑋𝑢 ×𝑋𝑣

∥ 𝑋𝑢 ×𝑋𝑣 ∥(𝑢, 𝑣), (17)

where,

∥𝑥𝑢 × 𝑥𝑣∥ =
√
𝐸𝐺− 𝐹 2

= 𝑓2

√
(𝑓1′)2 {(𝑔1 ′)2 + (𝑔

2
′)2}+ (𝑓2′)2 {𝑔1𝑔2 ′ − 𝑔1 ′𝑔2}2,

𝑓2 ∕= 0.

does not vanish [10].
The second partial derivatives of 𝑋(𝑢, 𝑣) are expressed

as follows,

𝑋𝑢𝑢(𝑢, 𝑣) = (𝑓1
′′(𝑢), 𝑓2′′(𝑢)𝑔1(𝑣), 𝑓2′′(𝑢)𝑔2(𝑣)), (18)

𝑋𝑢𝑣(𝑢, 𝑣) = (0, 𝑓2
′(𝑢)𝑔

1

′(𝑣), 𝑓2′(𝑢)𝑔2
′(𝑣)), (19)

𝑋𝑣𝑣(𝑢, 𝑣) = (0, 𝑓2(𝑢)𝑔1
′′(𝑣), 𝑓2(𝑢)𝑔2

′′(𝑣)). (20)

Similarly, the coefficients of the second fundamental
form of the surface are,

𝑒 =< 𝑋𝑢𝑢(𝑢, 𝑣), 𝑁(𝑢, 𝑣) >

=
𝑓2(𝑢)√
𝐸𝐺− 𝐹 2

𝐴(𝑢)𝐵(𝑣), 𝑓2(𝑢) ∕= 0,

𝑓 =< 𝑋𝑢𝑣(𝑢, 𝑣), 𝑁(𝑢, 𝑣) >= 0,

𝑔 =< 𝑋𝑣𝑣(𝑢, 𝑣), 𝑁(𝑢, 𝑣) >

=
(𝑓2(𝑢))

2𝑓1
′
(𝑢)√

𝐸𝐺− 𝐹 2
𝐶(𝑣), 𝑓2(𝑢) ∕= 0,

where,

𝐴(𝑢) = (𝑓1
′′(𝑢)𝑓2′(𝑢)− 𝑓2′′(𝑢)𝑓1′(𝑢)), (21)

𝐵(𝑣) = (𝑔1(𝑣)𝑔2
′(𝑣)− 𝑔2(𝑣)𝑔1′(𝑣)), (22)

𝐶(𝑣) = (𝑔2
′′(𝑣)𝑔1′(𝑣)− 𝑔2′(𝑣)𝑔1′′(𝑣)). (23)

Furthermore, the Gaussian and mean curvatures of the
surface becomes,

𝐾 =
𝑒𝑔 − 𝑓2
𝐸𝐺− 𝐹 2

=
(𝑓2(𝑢))

3𝑓1
′
(𝑢)

(𝐸𝐺− 𝐹 2)2
𝐴(𝑢)𝐵(𝑣)𝐶(𝑣); 𝑓2(𝑢) ∕= 0,

and

𝐻 =
𝐸𝑔 +𝐺𝑒 − 2𝐹𝑓

2(𝐸𝐺− 𝐹 2)

=

𝑓2
2

{
𝑓1

′
[𝐴1]𝐶(𝑣) + 𝑓2

∥∥∥𝛽′
(𝑣)

∥∥∥2

𝐴(𝑢)𝐵(𝑣)

}
2(𝐸𝐺− 𝐹 2)

3
2

respectively. Here 𝐴1 = (𝑓1
′
)2 + (𝑓2

′
)2 ∥(𝛽(𝑣))∥2.

Summing up the following results are proved.

Theorem 1: Let 𝑋(𝑢, 𝑣) = 𝛼(𝑢) ⊗ 𝛽(𝑢) be the
spherical product surface patch of two planar curves.
If 𝑋(𝑢, 𝑣) is a flat surface patch (i.e. 𝐾 = 0) in 𝐸3

then either 𝛼(𝑢) (or 𝛽(𝑣)) is a straight line, or 𝑓1
′
(𝑢) = 0.

Proof: Suppose the spherical product immersion 𝛼⊗ 𝛽
of two planar curves is a flat surface. Then by Equation
(24) one of the terms 𝑓1′(𝑢), 𝐴(𝑢), 𝐵(𝑣), or 𝐶(𝑣)
vanishes identically. For the case 𝑓1′(𝑢) = 0, the spherical
product surface becomes a part of a plane. Furthermore,
𝐴(𝑢) = 0 (or 𝐶(𝑣) = 0) implies that 𝛼(𝑢) (or 𝛽(𝑣)) is
a straight line. For the case 𝐵(𝑣) = 0, the curve 𝛽(𝑣) is
a straight line passing through the origin. This completes
the proof of the theorem.

Theorem 2: The spherical product surface patch
𝑋(𝑢, 𝑣) = 𝛼(𝑢) ⊗ 𝛽(𝑢) of two planar curves 𝛼 and 𝛽
is minimal (i.e. 𝐻 = 0) in 𝐸3 if and only if,

𝑓1
′
(𝑢)

[
(𝑓1

′(𝑢))2 + (𝑓2
′
(𝑢))2 ∥(𝛽(𝑣))∥2

]
𝐶(𝑣) (24)

+𝑓2

∥∥∥𝛽′
(𝑣)

∥∥∥2

𝐴(𝑢)𝐵(𝑣) = 0.

Proof: Suppose the spherical product patch 𝑋(𝑢, 𝑣) of
two planar curves is a minimal. Then by definition the
mean curvature 𝐻 vanishes identically. So, by the use of
Equation (24) we get (25).

By using Theorem 1, we obtain the following.
Corollary 1: Let 𝑋(𝑢, 𝑣) be a spherical product surface
patch of two 2𝐷 curves 𝛼(𝑢) = (𝑓1(𝑢), 𝑓2(𝑢)) and 𝛽(𝑣) =
(𝑔1(𝑣), 𝑔2(𝑣)).

i) If 𝛼(𝑢) is a straight line with 𝑓1′(𝑢) = 0 then the
surface becomes a part of a plane.

ii) If 𝛼(𝑢) is a straight line with 𝑓2′(𝑢) = 0, then the
surface becomes a cylinder over the curve 𝛽(𝑣).

iii) If 𝛼(𝑢) is a straight line with 𝑓2(𝑢) = 𝑚𝑓1(𝑢)+𝑛
then the surface becomes conical.

By using Theorem 2, we obtain the following.
Corollary 2: Let 𝑋(𝑢, 𝑣) be a spherical product surface
patch of two 2𝐷 curves 𝛼(𝑢) = (𝑓1(𝑢), 𝑓2(𝑢)) and 𝛽(𝑣) =
(𝑔1(𝑣), 𝑔2(𝑣)).

i) If 𝛼(𝑢) is a straight line and 𝛽(𝑣) is a 2𝐷 curve
(which is not a straight line) then the spherical product is
a non-minimal and flat surface.

ii) If 𝛽(𝑣) is a straight line passing through origin and
𝛼(𝑢) is any 2𝐷 curve then the spherical product is both
minimal and flat.

iii) If 𝛼(𝑢) is the 2D curve Catenary given with the
parametrization 𝛼(𝑢) = (𝑢, 𝑎 cosh(𝑢𝑎 + 𝑏)), 𝑎, 𝑏 ∈ 𝑅, 𝑎 ∕=
0, and 𝛽(𝑣) is a unit circle then the surface patch 𝑋(𝑢, 𝑣)
is a surface of revolution which is minimal and non-flat
[10].
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Gielis curves modified by 𝑓(𝜃). 𝑓(𝜃) = cos(4𝜃, 𝑚 = 4,
𝑛1 = 𝑛2 = 𝑛3 = 100, 𝑚 = 5, 𝑛1 = 𝑛2 = 𝑛3 = 5 𝑓(𝜃) = exp(0.5𝜃
, 𝑚 = 4, 𝑛1 = 𝑛2 = 𝑛3 = 100, 𝑚 = 2, 𝑛1 = 𝑛2 = 𝑛3 = 100

IV. EXAMPLES

In this section we show some examples. For this purpose
we construct some 2D and 3D geometry models by using
supershapes given parametrically in the Equations ((8)-
(10) respectively.

First, we construct a geometric model of a planar curve
𝑓(𝜃) by using generalized superformula given parametri-
cally in the Equation (9). For more details the reader is
referred to [6]. Figure 3. shows examples of Geilis curves
modified by 𝑓(𝜃).

As a second example, we construct a geometry model
of a bean shaped curve and the corresponding surface. The
curve corresponding to the geometry of the bean shaped
curve is given be by the superformula,

𝑟(𝜃) =
1(∣∣∣ cos( 𝜃

2 )

1

∣∣∣11.1909 + ∣∣∣ sin( 𝜃
2 )

2

∣∣∣1.3) 1
1.737933

(25)

The geometry model corresponding the bean shaped
surface is given by supershape formula which is described
parametrically using the Equation (10). Figure 4. shows
the geometry of the bean shaped curve and the correspond-
ing surface.

Finally, in Figure 5 we show examples of some flat and
minimal spherical product surfaces discussed in this paper.

V. CONCLUSION

In this paper, a method of spherical product surface
of two 2D curves is investigated. To demonstrate the

(a)

(b)

Figure 4. The bean shaped models

Figure 5. Examples of minimal spherical product surfaces

performance of the proposed method, parameters of su-
perquadrics and supershapes models were constructed
from the superellipses and superformulas. Superquadrics
and supershapes are solid models that possess simple
parametrisations and are capable of representing a wide
variety of standard geometric solids as well as smooth
shapes in between. This makes them much more conve-
nient for representing rounded, blob-like geometry which
are common in nature.

In this paper, using differential geometry we classify
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the spherical product surfaces of flat or minimal type.
The results we have obtained suggest that we can develop
techniques for generating a wide variety geometry which
can be defined as mathematical functions. Often this type
of geometry generation techniques, where the geometry
is defined as a simple mathematical functions, is desir-
able. For example, function based geometry modelling
techniques can represent the geometry of an object with
arbitrary level of resolution as opposed to standard mesh
models.

As for future work we aim to study the spherical product
surfaces on a 3D curve with a 2D curve which will be
a surface in 𝐸4. Such a formulation can be utilised for
developing techniques for studying time-dependent geom-
etry, for example for the purpose of computer animation.
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