
CHAPTER 4RANDOM NUMBER GENERATION1Pierre L'EcuyerUniversit�e de Montr�eal2
4.1 INTRODUCTIONRandom numbers are the nuts and bolts of simulation. Typically, all the randomnessrequired by the model is simulated by a random number generator whose output isassumed to be a sequence of independent and identically distributed (IID) U(0; 1) ran-dom variables (i.e., continuous random variables distributed uniformly over the interval(0; 1)). These random numbers are then transformed as needed to simulate randomvariables from di�erent probability distributions, such as the normal, exponential, Pois-son, binomial, geometric, discrete uniform, etc., as well as multivariate distributionsand more complicated random objects. In general, the validity of the transformationmethods depends strongly on the IID U(0; 1) assumption. But this assumption is false,since the random number generators are actually simple deterministic programs tryingto fool the user by producing a deterministic sequence that looks random.What could be the impact of this on the simulation results? Despite this problem,are there \safe" generators? What about the generators commonly available in systemlibraries and simulation packages? If they are not satisfactory, how can we build betterones? Which ones should be used, and where is the code? These are some of the topicsaddressed in this chapter.1Chapter 4 of the Handbook on Simulation, Ed.: Jerry Banks, Wiley, 1998. Version: February 27,19982D�epartement d'informatique et de recherche op�erationnelle, Universit�e de Montr�eal, C.P. 6128,Succ. Centre-Ville, Montr�eal, H3C 3J7, Canada. Email: lecuyer@iro.umontreal.ca



4.1.1 Pseudorandom NumbersTo draw the winning number for several million dollars in a lottery, people would gen-erally not trust a computer. They would rather prefer a simple physical system thatthey understand well, such as drawing balls from one or more container(s) to select thesuccessive digits of the number (as done, for example, by Loto Quebec each week inMontreal). Even this requires many precautions: The balls must have identical weightsand sizes, be well mixed, and be changed regularly to reduce the chances that somenumbers come out more frequently than others in the long run. Such a procedure isclearly not practical for computer simulations, which often require millions and millionsof random numbers.Several other physical devices to produce random noise have been proposed and ex-periments have been conducted using these generators. These devices include gammaray counters, noise diodes, and so on [47, 62]. Some of these devices have been commer-cialized and can be purchased to produce random numbers on a computer. But they arecumbersome and they may produce unsatisfactory outputs, as there may be signi�cantcorrelation between the successive numbers. Marsaglia [90] applied a battery of statis-tical tests to three such commercial devices recently and he reports that all three failedthe tests spectacularly.As of today, the most convenient and most reliable way of generating the randomnumbers for stochastic simulations appears to be via deterministic algorithms with asolid mathematical basis. These algorithms produce a sequence of numbers which arein fact not random at all, but seem to behave like independent random numbers; thatis, like a realization of a sequence of IID U(0; 1) random variables. Such a sequence iscalled pseudorandom and the program that produces it is called a pseudorandom numbergenerator . In simulation contexts, the term random is used instead of pseudorandom (aslight abuse of language, for simpli�cation) and we do so in this chapter. The followingde�nition is taken from L'Ecuyer [62, 64].De�nition 1 A (pseudo)random number generator is a structure G = (S; s0; T; U;G),where S is a �nite set of states, s0 2 S is the initial state (or seed), the mapping2



T : S ! S is the transition function, U is a �nite set of output symbols, and G : S ! Uis the output function.The state of the generator is initially s0 and evolves according to the recurrence sn =T (sn�1), for n = 1; 2; 3; : : :. At step n, the generator outputs the number un = G(sn).The un, n � 0, are the observations, and are also called the random numbers producedby the generator. Clearly, the sequence of states sn is eventually periodic, since thestate space S is �nite. Indeed, the generator must eventually revisit a state previouslyseen; that is, sj = si for some j > i � 0. From then on, one must have sj+n = si+nand uj+n = ui+n for all n � 0. The period length is the smallest integer � > 0 suchthat for some integer � � 0 and for all n � � , s�+n = sn. The smallest � with thisproperty is called the transient. Often, � = 0 and the sequence is then called purelyperiodic. Note that the period length cannot exceed jSj, the cardinality of the statespace. Good generators typically have their � very close to jSj (otherwise, there is awaste of computer memory).4.1.2 Example: A Linear Congruential GeneratorExample 1 The best-known and (still) most widely used types of generators are thesimple linear congruential generators (LCGs) [41, 57, 60, 82]. The state at step n is aninteger xn and the transition function T is de�ned by the recurrencexn = (axn�1 + c) mod m; (1)where m > 0, a > 0, and c are integers called the modulus, the multiplier , and theadditive constant , respectively. Here, \mod m" denotes the operation of taking the leastnonnegative residue modulo m. In other words, multiply xn�1 by a, add c, divide theresult by m, and put xn equal to the remainder of the division. One can identify sn withxn and the state space S is the set f0; : : : ; m � 1g. To produce values in the interval[0; 1], one can simply de�ne the output function G by un = G(xn) = xn=m.When c = 0, this generator is called a multiplicative linear congruential generator(MLCG). The maximal period length for the LCG is m in general. For the MLCG it3



cannot exceed m � 1, since xn = 0 is an absorbing state that must be avoided. Twopopular values ofm arem = 231�1 andm = 232. But as discussed later, these values aretoo small for the requirements of today's simulations. LCGs with such small moduli arestill in widespread use, mainly because of their simplicity and ease of implementation,but we believe that they should be discarded and replaced by more robust generators.For a concrete illustration, let m = 231 � 1 = 2147483647, c = 0, and a = 16807.These parameters were originally proposed in [83]. Take x0 = 12345. Thenx1 = 16807� 12345 mod m = 207482415;u1 = 207482415=m = 0:0966165285;x2 = 16807� 207482415 mod m = 1790989824;u2 = 1790989824=m = 0:8339946274;x3 = 16807� 1790989824 mod m = 2035175616;u3 = 2035175616=m = 0:9477024977;and so on.4.1.3 Seasoning the Sequence with External RandomnessIn certain circumstances one may want to combine the deterministic sequence withexternal physical noise. The simplest and most frequently used way of doing this insimulation contexts is to select the seed s0 randomly. If s0 is drawn uniformly from S,say by picking balls randomly from a container or by tossing fair coins, the generatorcan be viewed as an extensor of randomness: It stretches a short, truly random seed intoa longer sequence of random-looking numbers. De�nition 1 can easily be generalized toaccommodate this possibility: Add to the structure a probability distribution � de�nedon S and say that s0 is selected from �.In some contexts, one may want to rerandomize the state sn of the generator everynow and then, or to jump ahead from sn to sn+� for some random integer �. For example,4



certain types of slot machines in casinos use a simple deterministic random numbergenerator, which keeps running at full speed (i.e., computing its successive states) evenwhen there is nobody playing with the machine. Whenever a player hits the appropriatebutton and some random numbers are needed to determine the winning combination(e.g., in the game of Keno) or to draw a hand of cards (e.g., for poker machines), thegenerator provides the output corresponding to its current state. Each time the playerhits the button, he or she selects a �, as just mentioned. This � is random (althoughnot uniformly distributed). Since typical generators can advance by more than 1 millionstates per second, hitting the button at the right time to get a speci�c state or predictingthe next output value from the previous ones is almost impossible.One could go further and select not only the seed, but also some parameters of thegenerator at random. For example, for a MLCG, one may select the multiplier a atrandom from a given set of values (for a �xed m) or select the pairs (a;m) at randomfrom a given set. Certain classes of generators for cryptographic applications are de�nedin a way that the parameters of the recurrence (e.g., the modulus) are viewed as part ofthe seed and must be generated randomly for the generator to be safe (in the sense ofunpredictability).After observing that physical phenomena by themselves are bad sources of randomnumbers and that the deterministic generators may produce sequences with too muchstructure, Marsaglia [90] decided to combine the output of some random number gen-erators with various sources of white and black noise, such as music, pictures, or noiseproduced by physical devices. The combination was done by addition modulo 2 (bitwiseexclusive-or) between the successive bits of the generator's output and of the binary�les containing the noise. The result was used to produce a CD-ROM containing 4.8billion random bits, which appear to behave as independent bits distributed uniformlyover the set f0; 1g. Such a CD-ROM may be interesting but is no universal solution: Itsuse cannot match the speed and convenience of a good generator, and some applicationsrequire much more random numbers than provided on this disk.5



4.1.4 Design of Good GeneratorsHow can one build a deterministic generator whose output looks totally random? Per-haps a �rst idea is to write a computer program more or less at random that can alsomodify its own code in an unpredictable way. However, experience shows that randomnumber generators should not be built at random (see Knuth [57] for more discussionon this). Building a good random number generator may look easy on the surface, butit is not. It requires a good understanding of heavy mathematics.The techniques used to evaluate the quality of random number generators can bepartitioned into two main classes: The structural analysis methods (sometimes calledtheoretical tests) and the statistical methods (also called empirical tests). An empiricaltest views the generator as a black box. It observes the output and applies a statisticaltest of hypothesis to catch up signi�cant statistical defects. An unlimited number of suchtests can be designed. Structural analysis, on the other hand, studies the mathematicalstructure underlying the successsive values produced by the generator, most often overits entire period length. For example, vectors of t successive output values of a LCGcan be viewed as points in the t-dimensional unit hypercube [0; 1]t. It turns out thatall these points, over the entire period of the generator, form a regular lattice structure.As a result, all the points lie in a limited number of equidistant parallel hyperplanes, ineach dimension t. Computing certain numerical �gures of merit for these lattices (e.g.,computing the distances between neighboring hyperplanes) is an example of structuralanalysis. Statistical testing and structural analysis is discussed more extensively inforthcoming sections. We emphasize that all these methods are in a sense heuristic:None ever proves that a particular generator is perfectly random or fully reliable forsimulation. The best they can do is improve our con�dence in the generator.4.1.5 Overview of What FollowsWe now give an overview of the remainder of this chapter. In the next section we por-tray our ideal random number generator. The desired properties include uniformity,independence, long period, rapid jump-ahead capability, ease of implementation, and6



e�ciency in terms of speed and space (memory size used). In certain situations, unpre-dictability is also an issue. We discuss the scope and signi�cance of structural analysisas a guide to select families of generators and choose speci�c parameters. Section 4.3covers generators based on linear recurrences. This includes the linear congruential,multiple recursive, multiply-with-carry, Tausworthe, generalized feedback shift registergenerators, all of which have several variants, and also di�erent types of combinations ofthese. We study their structural properties at length. Section 4.4 is devoted to methodsbased on nonlinear recurrences, such as inversive and quadratic congruential generators,as well as other types of methods originating from the �eld of cryptology. Section 4.5summarizes the ideas of statistical testing. In Section 4.6 we outline the speci�cationsof a modern uniform random number package and refers to available implementations.We also discuss parallel generators briey.4.2 DESIRED PROPERTIES4.2.1 Unpredictability and \True" RandomnessFrom the user's perspective, an ideal random number generator should be like a black boxproducing a sequence that cannot be distinguished from a truly random one. In otherwords, the goal is that given the output sequence (u0; u1; : : :) and an in�nite sequenceof IID U(0; 1) random variables, no statistical test (or computer program) could tellwhich is which with probability larger than 1/2. An equivalent requirement is that afterobserving any �nite number of output values, one cannot guess any given bit of any givenunobserved number better than by ipping a fair coin. But this is an impossible dream.The pseudorandom sequence can always be determined by observing it su�ciently, sinceit is periodic. Similarly, for any periodic sequence, if enough computing time is allowed,it is always possible to construct a statistical test that the sequence will fail spectacularly.To dilute the goal we may limit the time of observation of the sequence and thecomputing time for the test. This leads to the introduction of computational complexityinto the picture. More speci�cally, we now consider a family of generators, fGk; k =1; 2; : : :g, indexed by an integral parameter k equal to the number of bits required to7



represent the state of the generator. We assume that the time required to compute thefunctions T and G is (at worst) polynomial in k. We also restrict our attention to theclass of statistical tests whose running time is polynomial in k. Since the period lengthtypically increases as 2k, this precludes the tests that exhaust the period. A test is alsoallowed to toss coins at random, so its outcome is really a random variable. We say thatthe family fGkg is polynomial-time perfect if, for any polynomial time statistical testtrying to distinguish the output sequence of the generator from an in�nite sequence ofIID U(0; 1) random variables, the probability that the test makes the right guess doesnot exceed 1=2 + e�k�, where � is a positive constant. An equivalent requirement isthat no polynomial-time algorithm can predict any given bit of un with probability ofsuccess larger than 1=2 + e�k�, after observing u0; : : : ; un�1, for some � > 0. This setupis based on the idea that what cannot be computed in polynomial time is practicallyimpossible to compute if k is reasonably large. It was introduced in cryptology, whereunpredictability is a key issue (see [4, 6, 59, 78] and other references given there).Are e�cient polynomial-time perfect families of generators available? Actually, no-body knows for sure whether or not such a family exists. But some generator familiesare conjectured to be polynomial-time perfect. The one with apparently the best behav-ior so far is the BBS, introduced by Blum, Blum, and Shub [4], explained in the nextexample.Example 2 The BBS generator of size k is de�ned as follows. The state space Sk isthe set of triplets (p; q; x) such that p and q are (k=2)-bit prime integers, p+1 and q+1are both divisible by 4, and x is a quadratic residue modulo m = pq, relatively prime tom (i.e., x can be expressed as x = y2 mod m for some integer y that is not divisible by por q). The initial state (seed) is chosen randomly from Sk, with the uniform distribution.The state then evolves as follows: p and q remain unchanged and the successive valuesof x follow the recurrence xn = x2n�1 mod m:At each step, the generator outputs the �k least signi�cant bits of xn (i.e., un =xn mod 2�k), where �k � K log k for some constant K. The relevant conjecture here8



is that with probability at least 1 � e�k� for some � > 0, factoring m (i.e., �nding por q, given m) cannot be done in polynomial time (in k). Under this conjecture, theBBS generator has been proved polynomial-time perfect [4, 124]. Now, a down-to-earthquestion is: How large should be k to be safe in practice? Also, how small should beK? Perhaps no one really knows. A k larger than a few thousands is probably prettysafe but makes the generator too slow for general simulation use.Most of the generators discussed in the remainder of this chapter are known not to bepolynomial-time perfect. However, they seem to have good enough statistical propertiesfor most reasonable simulation applications.4.2.2 What Is a Random Sequence?The idea of a truly random sequence makes sense only in the (abstract) framework ofprobability theory. Several authors (see, e.g., [57]) give de�nitions of a random sequence,but these de�nitions require nonperiodic in�nite-length sequences. Whenever one selectsa generator with a �xed seed, as in De�nition 1, one always obtains a deterministicsequence of �nite length (the length of the period) which repeats itself inde�nitely.Choosing such a random number generator then amounts to selecting a �nite-lengthsequence. But among all sequences of length � of symbols from the set U , for given �and �nite U , which ones are better than others? Let jU j be the cardinality of the setU . If all the symbols are chosen uniformly and independently from U , each of the jU j�possible sequences of symbols from U has the same probability of occurring, namelyjU j��. So it appears that no particular sequence (i.e., no generator) is better than anyother. A pretty disconcerting conclusion! To get out of this dead end, one must take adi�erent point of view.Suppose that a starting index n is randomly selected, uniformly from the set f1; 2; : : : ;�g, and consider the output vector (or subsequence) un = (un; : : : ; un+t�1), where t� �.Now, un is a (truly) random vector. We would like un to be uniformly distributed (oralmost) over the set U t of all vectors of length t. This requires � � jU jt, since there areat most � di�erent values of un in the sequence. For � < jU jt, the set 	 = fun; 1 �9



n � �g can cover only part of the set U t. Then one may ask 	 to be uniformlyspread over U t. For example, if U is a discretization of the unit interval [0; 1], such asU = f0; 1=m; 2=m; : : : ; (m� 1)=mg for some large integer m, and if the points of 	 areevenly distributed over U t, they are also (pretty much) evenly distributed over the unithypercube [0; 1]t.Example 3 Suppose that U = f0; 1=100; 2=100; : : : ; 99=100g and that the period ofthe generator is � = 104. Here we have jU j = 100 and � = jU j2. In dimension 2, thepairs un = (un; un+1) can be uniformly distributed over U2, and this happens if andonly if each pair of successive values of the form (i=100; j=100), for 0 � i; j < 100 occursexactly once over the period. In dimension t > 2, we have jU jt = 102t points to coverbut can cover only 104 of those because of the limited period length of our generator. Indimension 3, for instance, we can cover only 104 points out of 106. We would like those104 points that are covered to be very uniformly distributed over the unit cube [0; 1]3.An even distribution of 	 over U t, in all dimensions t, will be our basis for discrimi-nating among generators. The rationale is that under these requirements, subsequencesof any t successive output values produced by the generator, from a random seed, shouldbehave much like random points in the unit hypercube. This captures both uniformityand independence: If un = (un; : : : ; un+t�1) is generated according to the uniform dis-tribution over [0; 1]t, the components of un are independent and uniformly distributedover [0; 1]. This idea of looking at what happens when the seed is random, for a given�nite sequence, is very similar to the scanning ensemble idea of Compagner [11, 12],except that we use the framework of probability theory instead.The reader may have already noticed that under these requirements, 	 will notlook at all like a random set of points, because its distribution over U t is too even(or superuniform, as some authors say [116]). But what the foregoing model assumesis that only a few points are selected at random from the set 	. In this case, thebest one can do for these points to be distributed approximately as IID uniforms is totake 	 superuniformly distributed over U t. For this to make some sense, � must be10



several orders of magnitude larger than the number of output values actually used bythe simulation.To assess this even distribution of the points over the entire period, some (theoretical)understanding of their structural properties is necessary. Generators whose structuralproperties are well understood and precisely described may look less random, but thosethat are more complicated and less understood are not necessarily better. They mayhide strong correlations or other important defects. One should avoid generators withoutconvincing theoretical support. As a basic requirement, the period length must be knownand huge. But this is not enough. Analyzing the equidistribution of the points as justdiscussed, which is sometimes achieved by studying the lattice structure, usually givesgood insight on how the generator behaves. Empirical tests can be applied thereafter,just to improve one's con�dence.4.2.3 DiscrepancyA well-established class of measures of uniformity for �nite sequences of numbers arebased on the notion of discrepancy . This notion and most related results are well coveredby Niederreiter [102]. We only recall the most basic ideas here.Consider the N points un = (un; : : : ; un+t�1), for n = 0; : : : ; N � 1, in dimensiont, formed by (overlapping) vectors of t successive output values of the generator. Forany hyper-rectangular box aligned with the axes, of the form R = Qtj=1[�j; �j), with0 � �j < �j � 1, let I(R) be the number of points un falling into R, and V (R) =Qtj=1(�j � �j) be the volume of R. Let R be the set of all such regions R, andD(t)N = maxR2R jV (R)� I(R)=N j:This quantity is called the t-dimensional (extreme) discrepancy of the set of pointsfu0; : : : ;uN�1g. If we impose �j = 0 for all j; that is, we restrict R to those boxeswhich have one corner at the origin, then the corresponding quantity is called the stardiscrepancy , denoted by D�(t)N . Other variants also exist, with richer R.11



A low discrepancy value means that the points are very evenly distributed in theunit hypercube. To get superuniformity of the sequence over its entire period, onemight want to minimize the discrepancy D(t)� or D�(t)� for t = 1; 2; : : :. A major practicaldi�culty with discrepancy is that it can be computed only for very special cases. ForLCGs, for example, it can be computed e�ciently in dimension t = 2, but for largert, the computing cost then increases as O(N t). In most cases, only (upper and lower)bounds on the discrepancy are available. Often, these bounds are expressed as ordersof magnitude as a function of N , are de�ned for N = �, and/or are averages over alarge (speci�c) class of generators (e.g., over all full-period MLCGs with a given primemodulus). Discrepancy also depends on the rectangular orientation of the axes, incontrast to other measures of uniformity, such as the distances between hyperplanes forLCGs (see Section 4.3.4). On the other hand, it applies to all types of generators, notonly those based on linear recurrences.We previously argued for superuniformity over the entire period, which means seekingthe lowest possible discrepancy. When a subsequence of length N is used (for N � �),starting, say, at a random point along the entire sequence, the discrepancy of that sub-sequence should behave (viewed as a random variable) as the discrepancy of a sequenceof IID U(0; 1) random variables. The latter is (roughly) of order O(N�1=2) for both thestar and extreme discrepancies.Niederreiter [102] shows that the discrepancy of full-period MLCGs over their en-tire period (of length � = m � 1), on the average over multipliers a, is of orderO(m�1(logm)t log log(m+1)). This order is much smaller (for large m) than O(m�1=2),meaning superuniformity. Over small fractions of the period length, the available boundson the discrepancy are more in accordance with the law of the iterated logarithm [100].This is yet another important justi�cation for never using more than a negligible fractionof the period.Suppose now that numbers are generated in [0; 1] with L fractional binary digits.This gives resolution 2�L, which means that all un's are multiples of 2�L. It then follows([102]) that D�(t)N � 2�L for all t � 1 and N � 1. Therefore, as a necessary conditionfor the discrepancy to be of the right order of magnitude, the resolution 2�L must be12



small enough for the number of points N that we plan to generate: 2�L should be muchsmaller than N�1=2. A too coarse discretization implies a too large discrepancy.4.2.4 Quasi-random SequencesThe interest in discrepancy stems largely from the fact that deterministic error boundsfor (Monte Carlo) numerical integration of a function are available in terms of D(t)Nand of a certain measure of variability of the function. In that context, the smaller thediscrepancy, the better (because the aim is to minimize the numerical error, not really toimitate IID U(0; 1) random variables). Sequences for which the discrepancy of the �rstN values is small for all N are called low-discrepancy or quasi-random sequences [102].Numerical integration using such sequences is called quasi-Monte Carlo integration. Toestimate the integral using N points, one simply evaluates the function (say, a functionof t variables) at the �rst N points of the sequence, takes the average, multiplies bythe volume of the domain of integration, and uses the result as an approximation of theintegral. Speci�c low-discrepancy sequences have been constructed by Sobol', Faure,and Niederreiter, among others (see [102]). Owen [106] gives a recent survey of theiruse. In this chapter we concentrate on pseudorandom sequences and will not discussquasi-random sequences further.4.2.5 Long PeriodLet us now return to the desired properties of pseudorandom sequences, starting with thelength of the period. What is long enough? Suppose that a simulation experiment takesN random numbers from a sequence of length �. Several reasons justify the need to take� � N (see, e.g., [21, 64, 86, 102, 112]). Based on geometric arguments, Ripley [112]suggests that � � N2 for linear congruential generators. The papers [75, 79] providestrong experimental support for this, based on extensive empirical tests. Our previousdiscussion also supports the view that � must be huge in general.Period lengths of 232 or smaller, which are typical for the default generators of manyoperating systems and software packages, are unacceptably too small. Such period13



lengths can be exhausted in a matter of minutes on today's workstations. Even � = 264is a relatively small period length. Generators with period lengths over 2200 are nowavailable.4.2.6 E�ciencySome say that the speed of a random number generator (the number of values that itcan generate per second, say) is not very important for simulation, since generating thenumbers typically takes only a tiny fraction of the simulation time. But there are severalcounterexamples, such as for certain large simulations in particle physics [26], or whenusing intensive Monte Carlo simulation to estimate with precision the distribution of astatistic that is fast to compute but requires many random numbers. Moreover, even if afast generator takes only, say, 5% of the simulation time, changing to another one that is20 times slower will approximately double the total simulation time. Since simulationsoften consume several hours of CPU time, this is signi�cant.The memory size used by a generator might also be important in general, espe-cially since simulations often use several generators in parallel, for instance to maintainsynchronization for variance reduction purposes (see Section 4.6 and [7, 60] for moredetails).4.2.7 Repeatability, Splitting Facilities, and Ease of ImplementationThe ability to replicate exactly the same sequence of random numbers, called repeatabil-ity , is important for program veri�cation and to facilitate the implementation of certainvariance reduction techniques [7, 55, 60, 113]. Repeatability is a major advantage ofpseudorandom sequences over sequences generated by physical devices. The latter canof course be stored on disks or other memory devices, and then reread as needed, butthis is less convenient than a good pseudorandom number generator that �ts in a fewlines of code in a high-level language.A code is said to be portable if it works without change and produces exactly thesame sequence (at least up to machine accuracy) across all \standard" compilers and14



computers. A portable code in a high-level language is clearly much more convenientthan a machine-dependent assembly-language implementation, for which repeatabilityis likely to be more di�cult to achieve.Ease of implementation also means the ease of splitting the sequence into (long)disjoint substreams and jumping quickly from one substream to the next. In Section 4.6we show why this is important. For this, there should be an e�cient way to compute thestate sn+� for any large �, given sn. For most linear-type generators, we know how to dothat. But for certain types of nonlinear generators and for some methods of combination(such as shu�ing), good jump-ahead techniques are unknown. Implementing a randomnumber package as described in Section 4.6 requires e�cient jump-ahead techniques.
4.2.8 Historical AccountsThere is an enormous amount of scienti�c literature on random number generation. Lawand Kelton [60] present a short (but interesting) historical overview. Further surveysand historical accounts of the old days are provided in [47, 53, 119].Early attempts to construct pseudorandom number generators have given rise to allsorts of bad designs, sometimes leading to disatrous results. An illustrative example isthe middle-square method, which works as follows (see, e.g., [57, 60]). Take a b-digitnumber xi�1 (say, in base 10, with b even), square it to obtain a 2b-digit number (perhapswith zeros on the left), and extract the b middle digits to de�ne the next number xi. Toobtain an output value ui in [0; 1), divide xi by 10b. The period length of this generatordepends on the initial value and is typically very short, sometimes of length 1 (such aswhen the sequence reaches the absorbing state xi = 0). Hopefully, it is no longer used.Another example of a bad generator is RANDU (see G4 in Table 1).15



4.3 LINEAR METHODS4.3.1 Multiple-Recursive GeneratorConsider the linear recurrencexn = (a1xn�1 + � � �+ akxn�k) mod m; (2)where the order k and the modulus m are positive integers, while the coe�cientsa1; : : : ; ak are integers in the range f�(m � 1); : : : ; m � 1g. De�ne ZZm as the setf0; 1; : : : ; m�1g on which operations are performed modulom. The state at step n of themultiple recursive generator (MRG) [57, 62, 102] is the vector sn = (xn; : : : ; xn+k�1) 2ZZkm. The output function can be de�ned simply by un = G(sn) = xn=m, which givesa value in [0; 1], or by a more re�ned transformation if a better resolution than 1=m isrequired. The special case where k = 1 is the MLCG mentioned previously.The characteristic polynomial P of (2) is de�ned byP (z) = zk � a1zk�1 � � � � � ak: (3)The maximal period length of (2) is � = mk � 1, reached if and only if m is prime andP is a primitive polynomial over ZZm, identi�ed here as the �nite �eld with m elements.Suppose that m is prime and let r = (mk � 1)=(m� 1). The polynomial P is primitiveover ZZm if and only if it satis�es the following conditions, where everything is assumedto be modulo m (see [57])(a) [(�1)k+1ak](m�1)=q 6= 1 for each prime factor q of m� 1(b) zr mod P (z) = (�1)k+1ak(c) zr=q mod P (z) has degree > 0 for each prime factor q of r, 1 < q < r.For k = 1 and a = a1 (the MLCG case), these conditions simplify to a 6= 0 (mod m)and a(m�1)=q 6= 1 (modm) for each prime factor q ofm�1. For large r, �nding the factorsq to check condition (c) can be too di�cult, since it requires the factorization of r. In this16



case, the trick is to choose m and k so that r is prime (this can be done only for primek). Testing primality of large numbers (using probabilistic algorithms, for example, asin [73, 111]) is much easier than factoring. Given m, k, and the factorizations of m� 1and r, primitive polynomials are generally easy to �nd, simply by random search.If m is not prime, the period length of (2) has an upper bound typically much lowerthan mk � 1. For k = 1 and m = 2e, e � 4, the maximum period length is 2e�2, whichis reached if a1 = 3 or 5 (mod 8) and x0 is odd [57, p. 20]. Otherwise, if m = pe for pprime and e � 1, and k > 1 or p > 2, the upper bound is (pk � 1)pe�1 [36]. Clearly,p = 2 is very convenient from the implementation point of view, because the modulooperation then amounts to chopping-o� the higher-order bits. So to compute ax mod min that case, for example with e = 32 on a 32-bit computer, just make sure that theoverow-checking option or the compiler is turned o�, and compute the product ax usingunsigned integers while ignoring the overow.However, taking m = 2e imposes a big sacri�ce on the period length, especially fork > 1. For example, if k = 7 and m = 231 � 1 (a prime), the maximal period length is(231�1)7�1 � 2217. But for m = 231 and the same value of k, the upper bound becomes� � (27 � 1)231�1 < 237, which is more than 2180 times shorter. For k = 1 and p = 2,an upper bound on the period length of the ith least signi�cant bit of xn is max(1; 2i�2)[7], and if a full cycle is split into 2d equal segments, all segments are identical exceptfor their d most signi�cant bits [20, 26]. For k > 1 and p = 2, the upper bound on theperiod length of the ith least signi�cant bit is (2k � 1)2i�1. So the low-order bits aretypically much too regular when p = 2. For k = 7 and m = 231, for example, the leastsigni�cant bit has period length at most 27 � 1 = 127, the second least signi�cant bithas period length at most 2(27 � 1) = 254, and so on.Example 4 Consider the recurrence xn = 10205xn�1 mod 215, with x0 = 12345. The�rst eight values of xn, in base 10 and in base 2, arex0 = 12345 = 0110000001110012x1 = 20533 = 101000000110101217



x2 = 20673 = 1010000110000012x3 = 7581 = 0011101100111012x4 = 31625 = 1111011100010012x5 = 1093 = 0000100010001012x6 = 12945 = 0110010100100012x7 = 15917 = 0111110001011012:The last two bits are always the same. The third least signi�cant bit has a period lengthof 2, the fourth least signi�cant bit has a period length of 4, and so on.Adding a constant c as in (1) can slightly increase the period-length. The LCG withrecurrence (1) has period length m if and only if the following conditions are satis�ed([57, p. 16])1. c is relatively prime to m.2. a � 1 is a multiple of p for every prime factor p of m (including m itself if m isprime).3. If m is a multiple of 4, then a� 1 is also a multiple of 4.For m = 2e � 4, these conditions simplify to c is odd and a mod 4 = 1. But the low-order bits are again too regular: The period length of the ith least signi�cant bit of xnis at most 2i.A constant c can also be added to the right side of the recurrence (2). One can show(see [62]) that a linear recurrence of order k with such a constant term is equivalentto some linear recurrence of order k + 1 with no constant term. As a result, an upperbound on the period length of such a recurrence with m = pe is (pk+1� 1)pe�1, which ismuch smaller than mk for large e and k.All of this argues against the use of power-of-2 moduli in general, despite theiradvantage in terms of implementation. It favors prime moduli instead. Later, when18



discussing combined generators, we will also be interested in moduli that are the productsof a few large primes.4.3.2 Implementation for Prime mFor k > 1 and primem, for the characteristic polynomialP to be primitive, it is necessarythat ak and at least another coe�cient aj be nonzero. From the implementation pointof view, it is best to have only two nonzero coe�cients; that is, a recurrence of the formxn = (arxn�r + akxn�k) mod m (4)with characteristic trinomial P de�ned by P (z) = zk � arzk�r� ak. Note that replacingr by k � r generates the same sequence in reverse order.When m is not a power of 2, computing and adding the products modulo m in (2)or (4) is not necessarily straightforward, using ordinary integer arithmetic, because ofthe possibility of overow: The products can exceed the largest integer representable onthe computer. For example, if m = 231 � 1 and a1 = 16807, then xn�1 can be as largeas 231 � 2, so the product a1xn�1 can easily exceed 231. L'Ecuyer and Côt�e [76] studyand compare di�erent techniques for computing a product modulo a large integer m,using only integer arithmetic, so that no intermediate result ever exceeds m. Amongthe general methods, working for all representable integers and easily implementable ina high-level language, decomposition was the fastest in their experiments. Roughly, thismethod simply decomposes each of the two integers that are to be multiplied in twoblocks of bits (e.g., the 15 least signi�cant bits and the 16 most signi�cant ones, for a31-bit integer) and then cross-multiplies the blocks and adds (modulo m) just as onedoes when multiplying large numbers by hand.There is a faster way to compute ax mod m for 0 < a; x < m, called approximatefactoring , which works under the condition thata (m mod a) < m: (5)This condition is satis�ed if and only if a = i or a = bm=ic for i < pm (here bxc denotesthe largest integer smaller or equal to x, so bm=ic is the integer division of m by i). To19



implement the approximate factoring method, one initially precomputes (once for all)the constants q = bm=ac and r = m mod a. Then, for any positive integer x < m, thefollowing instructions have the same e�ect as the assignment x ax mod m, but withall intermediate (integer) results remaining strictly between �m and m [7, 61, 107]:y  bx=qc;x a(x� yq)� yr;IF x < 0 THEN x x+m END.As an illustration, if m = 231 � 1 and a = 16807, the generator satis�es the condition,since 16807 < pm. In this case, one has q = 127773 and r = 2836.H�ormann and Deringer [51] give a di�erent method, which is about as fast, for thecase where m = 231� 1. Fishman [41, p. 604] also uses a di�erent method to implementthe LCG with m = 231 � 1 and a = 95070637, which does not satisfy (5).Another approach is to represent all the numbers and perform all the arithmeticmodulo m in double-precision oating point. This works provided that the multipliersai are small enough so that the integers aixn�i and their sum are always representedexactly by the oating-point values. A su�cient condition is that the oating-pointnumbers are represented with at leastdlog2 ((m� 1)(a1 + � � �+ ak))ebits of precision in their mantissa, where dxe denotes the smallest integer larger orequal to x. On computers with good 64-bit oating-point hardware (most computersnowadays), this approach usually gives by far the fastest implementation (see, e.g., [68]for examples and timings).4.3.3 Jumping AheadTo jump ahead from xn to xn+� with an MLCG, just use the relationxn+� = a�xn mod m = (a� mod m)xn mod m:20



If many jumps are to be performed with the same �, the constant a� mod m can beprecomputed once and used for all subsequent computations.Example 5 Again, let m = 2147483647, a = 16807, and x0 = 12345. Suppose that wewant to compute x3 directly from x0, so � = 3. One easily �nds that 168073 mod m =1622650073 and x3 = 1622650073x0 mod m = 2035175616, which agrees with the valuegiven in Example 1. Of course, we are usually interested in much larger values of �, butthe method works the same way.For the LCG, with c 6= 0, one hasxn+� =  a�xn + c(a� � 1)a� 1 ! mod m:To jump ahead with the MRG, one way is to use the fact that it can be represented asa matrix MLCG: Xn = AXn�1 mod m, where Xn is sn represented as a column vectorand A is a k� k square matrix. Jumping ahead is then achieved in the same way as forthe MLCG: Xn+� = A�Xn mod m = (A� mod m)Xn mod m:Another way is to transform the MRG into its polynomial representation [64], in whichjumping ahead is easier, and then apply the inverse transformation to recover the originalrepresentation.4.3.4 Lattice Structure of LCGs and MRGsA lattice of dimension t, in the t-dimensional real space IRt, is a set of the formL = 8<:V = tXj=1 zjVj j each zj 2 ZZ9=; ; (6)where ZZ is the set of all integers and fV1; : : : ; Vtg is a basis of IRt. The lattice L is thusthe set of all integer linear combinations of the vectors V1; : : : ; Vt, and these vectors arecalled a lattice basis of L. The basis fW1; : : : ;Wtg of IRt which satis�es V 0iWj = �ijfor all 1 � i; j � t (where the prime means \transpose" and where �ij = 1 if i = j, 021



otherwise) is called the dual of the basis fV1; : : : ; Vtg, and the lattice generated by thisdual basis is called the dual lattice to L.Consider the setTt = fun = (un; : : : ; un+t�1) j n � 0; s0 = (x0; : : : ; xk�1) 2 ZZkmg (7)of all overlapping t-tuples of successive values produced by (2), with un = xn=m, fromall possible initial seeds. Then this set Tt is the intersection of a lattice Lt with thet-dimensional unit hypercube I t = [0; 1)t. For more detailed studies and to see how toconstruct a basis for this lattice Lt and its dual, see [23, 57, 73, 77]. For t � k it isclear from the de�nition of Tt that each vector (x0; : : : ; xt�1) in ZZtm can be taken as s0,so Tt = ZZtm=m = (ZZt=m) \ I t; that is, Lt is the set of all t-dimensional vectors whosecoordinates are multiples of 1=m, and Tt is the set of mt points in Lt whose coordinatesbelong to f0; 1=m; : : : ; (m � 1)=mg. For a full-period MRG, this also holds if we �xs0 in the de�nition of Tt to any nonzero vector of ZZkm, and then add the zero vectorto Tt. In dimension t > k, the set Tt contains only mk points, while ZZtm=m containsmt points. Therefore, for large t, Tt contains only a small fraction of the t-dimensionalvectors whose coordinates are multiples of 1=m.For full-period MRGs, the generator covers all of Tt except the zero state in onecycle. In other cases, such as for MRGs with nonprime moduli or MLCGs with power-of-2 moduli, each cycle covers only a smaller subset of Tt, and the lattice generated bythat subset is often equal to Lt, but may in some cases be a strict sublattice or subgrid(i.e., a shifted lattice of the form V0 + L where V0 2 IRt and L is a lattice). In thelatter case, to analyze the structural properties of the generator, one should examinethe appropriate sublattice or subgrid instead of Lt. Consider, for example, an MLCGfor which m is a power of 2, a mod 8 = 5, and x0 is odd. The t-dimensional pointsconstructed from successive values produced by this generator form a subgrid of Ltcontaining one-fourth of the points [3, 50]. For a LCG with m a power of 2 and c 6= 0,with full period length � = m, the points all lie in a grid that is a shift of the latticeLt associated with the corresponding MLCG (with the same a amd m). The value of cdetermines only the shifting and has no other e�ect on the lattice structure.22
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Figure 1: All pairs (un; un+1) for the LCG with m = 101 and a = 12.Example 6 Figures 1 to 3 illustrate the lattice structure of a small, but instructional,LCGs with (prime) modulusm = 101 and full period length � = 100, in dimension t = 2.They show all 100 pairs of successive values (un; un+1) produced by these generators,for the multipliers a = 12, a = 7, and a = 51, respectively. In each case, one clearlysees the lattice structure of the points. Any pair of vectors forming a basis determinea parallelogram of area 1/101. This holds more generally: In dimension t, the vectorsof any basis of Lt determine a parallelepiped of volume 1=mk. Conversely, any set of tvectors that determine such a parallelepiped form a lattice basis.The points are much more evenly distributed in the square for a = 12 than fora = 51, and slightly more evenly distributed for a = 12 than for a = 7. The points of Ltare generally more evenly distributed when there exists a basis comprised of vectors ofsimilar lengths. One also sees from the �gures that all the points lie in a relative smallnumber of equidistant parallel lines. In Figure 3, only two lines contain all the pointsand this leaves large empty spaces between the lines, which is bad.23
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Figure 2: All pairs (un; un+1) for the LCG with m = 101 and a = 7.In general, the lattice structure implies that all the points of Tt lie on a family ofequidistant parallel hyperplanes. Among all such families of parallel hyperplanes thatcover all the points, take the one for which the successive hyperplanes are farthest apart.The distance dt between these successive hyperplanes is equal to 1=`t, where `t is thelength of a shortest nonzero vector in the dual lattice to Lt. Computing a shortestnonzero vector in a lattice L means �nding the combination of values of zj in (6) givingthe shortest V . This is a quadratic optimization problem with integer variables and canbe solved by a branch-and-bound algorithm, as in [15, 40]. In these papers the authorsuse an ellipsoid method to compute the bounds on the zj for the branch-and-bound.This appears to be the best (general) approach known to date and is certainly muchfaster than the algorithm given in [23] and [57]. This idea of analyzing dt was introducedby Coveyou and MacPherson [18] through the viewpoint of spectral analysis. For thishistorical reason, computing dt is often called the spectral test .The shorter the distance dt, the better, because a large dt means thick empty slices24
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Figure 3: All pairs (un; un+1) for the LCG with m = 101 and a = 51.of space between the hyperplanes. One has the theoretical lower bounddt � d�t = 1tmk=t ; (8)where t is a constant which depends only on t and whose exact value is currentlyknown only for t � 8 [57]. So, for t � 8 and T � 8, one can de�ne the �gures of meritSt = d�t=dt and MT = mink�t�T St, which lie between 0 and 1. Values close to 1 aredesired. Another lower bound on dt, for t > k, is (see [67])dt � 0@1 + kXj=1 a2j1A�1=2 : (9)This means that an MRG whose coe�cients aj are small is guaranteed to have a large(bad) dt.Other �gures of merit have been introduced to measure the quality of random numbergenerators in terms of their lattice structure. For example, one can count the minimalnumber of hyperplanes that contain all the points or compute the ratio of lengths of25



the shortest and longest vectors in a Minkowski-reduced basis of the lattice. For moredetails on the latter, which is typically much more costly to compute than dt, the readercan consult [77] and the references given there. These alternative �gures of merit do nottell us much important information in addition to dt.Tables 1 and 2 give the values of dt and St for certain LCGs and MRGs. All thesegenerators have full period length. The LCGs of the �rst table are well known andmost are (or have been) heavily used. For m = 231 � 1, the multiplier a = 742938285was found by Fishman and Moore [42] in an exhaustive search for the MLCGs with thebest value of M6 for this value of m. It is used in the GPSS/H simulation environment.The second multiplier, a = 16807, was originally proposed in [83], is suggested in manysimulation books and papers (e.g., [7, 107, 114]) and appears in several software systemssuch as the SLAM II and SIMAN simulation programming languages, MATLAB [94],the IMSL statistical library [54], and in operating systems for the IBM and Macintoshcomputers. It satis�es condition (5). The IMSL library also has available the twomultipliers 397204094 and 950706376, with the same modulus, as well as the possibilityof adding a shu�e to the LCG. The multiplier a = 630360016 was proposed in [108], isrecommended in [60, 92] among others, and is used in software such as the SIMSCRIPTII.5 and INSIGHT simulation programming languages. Generator G4, with modulusm = 231 and multiplier a = 65539, is the infamous RANDU generator, used for along time in the IBM/360 operating system. Its lattice structure is particularly bad indimension 3, where all the points lie in only 15 parallel planes. Law and Kelton [60]give a graphical illustration. Generator G5, with m = 232, a = 69069, and c = 1, is usedin the VAX/VMS operating system. The LCG G6, with modulus m = 248, multipliera = 25214903917, and constant c = 11, is the generator implemented in the proceduredrand48 of the SUN Unix system's library [117]. G7, whose period length is slighly lessthan 240, is used in the Maple mathematical software. We actually recommend noneof the generators G1 to G7. Their period lengths are too short and they fail manystatistical tests (see Section 4.5).In Table 2, G8 and G9 are two MRGs of order 7 found by a random search formultipliers with a \good" lattice structure in all dimensions t � 20, among those giving26



Table 1: Distances between hyperplanes for some LCGsG1 G2 G3 G4 G5 G6 G7m 231 � 1 231 � 1 231 � 1 231 232 248 1012 � 11k 1 1 1 1 1 1 1a 742938285 16807 630360016 65539 69069 25214903917 427419669081c 0 0 0 0 1 11 0� 231 � 2 231 � 2 231 � 2 229 232 248 1012 � 12S2 0.8673 0.3375 0.8212 0.9307 0.6541 0.5110 0.7513S3 0.8607 0.4412 0.4317 0.0119 0.4971 0.8030 0.7366S4 0.8627 0.5752 0.7833 0.0595 0.6223 0.4493 0.6491S5 0.8319 0.7361 0.8021 0.1570 0.6583 0.5847 0.7307S6 0.8341 0.6454 0.5700 0.2927 0.3356 0.6607 0.6312S7 0.6239 0.5711 0.6761 0.4530 0.4499 0.8025 0.5598S8 0.7067 0.6096 0.7213 0.6173 0.6284 0.5999 0.55581=m 4.65E-10 4.65E-10 4.65E-10 4.65E-10 2.33E-10 3.55E-15 1.00E-12d2 2.315E-5 5.950E-5 2.445E-5 4.315E-5 3.070E-5 1.085E-7 1.239E-6d3 8.023E-4 1.565E-3 1.599E-3 0.0921 1.389E-3 1.693E-5 1.209E-4d4 4.528E-3 6.791E-3 4.987E-3 0.0928 6.277E-3 4.570E-4 1.295E-3d5 0.0133 0.0150 0.0138 0.0928 0.0168 1.790E-3 4.425E-3d6 0.0259 0.0334 0.0379 0.0928 0.0643 4.581E-3 0.0123d7 0.0553 0.0604 0.0510 0.0928 0.0767 7.986E-3 0.0256d8 0.0682 0.0791 0.0668 0.0928 0.0767 0.0184 0.0402d9 0.1060 0.1125 0.0917 0.0928 0.1000 0.0314 0.0677d10 0.1085 0.1250 0.1155 0.1543 0.1387 0.0374 0.0702d11 0.1690 0.1429 0.1270 0.1543 0.1443 0.0541 0.0778d12 0.2425 0.1961 0.2132 0.1622 0.1581 0.0600 0.1005d13 0.2425 0.1961 0.2132 0.1961 0.1826 0.0693 0.1336d14 0.2425 0.2000 0.2132 0.2132 0.1961 0.0928 0.1336d15 0.2425 0.2000 0.2182 0.2132 0.2041 0.0953 0.1361d16 0.2425 0.2085 0.2294 0.2357 0.2236 0.1000 0.1414d17 0.2425 0.2425 0.2357 0.2673 0.2236 0.1291 0.1690d18 0.2500 0.2500 0.2500 0.2673 0.2236 0.1291 0.1690d19 0.2673 0.2500 0.2500 0.2673 0.2500 0.1471 0.1961d20 0.2673 0.2887 0.2673 0.2887 0.2500 0.1508 0.2041d21 0.2673 0.2887 0.2673 0.2887 0.3162 0.1667 0.2294d22 0.2887 0.2887 0.2774 0.2887 0.3162 0.1768 0.2294d23 0.2887 0.2887 0.2774 0.3162 0.3162 0.1890 0.2294d24 0.3015 0.2887 0.3015 0.3162 0.3162 0.1961 0.2294d25 0.3015 0.2887 0.3015 0.3162 0.3162 0.1961 0.2425d26 0.3015 0.2887 0.3015 0.3162 0.3162 0.1961 0.2425d27 0.3015 0.3015 0.3015 0.3162 0.3162 0.1961 0.2500d28 0.3015 0.3015 0.3333 0.3162 0.3162 0.2132 0.2673d29 0.3162 0.3015 0.3333 0.3162 0.3162 0.2236 0.2673d30 0.3162 0.3162 0.3333 0.3536 0.3162 0.2236 0.267327



Table 2: Distances between hyperplanes for some MRGsG8 G9 G10 G11m 231 � 19 231 � 19 (231 � 1)(231 � 2000169) (231 � 85)(231 � 249)k 7 7 3 1a1 1975938786 1071064 2620007610006878699 1968402271571654650a2 875540239 0 4374377652968432818a3 433188390 0 667476516358487852a4 451413575 0a5 1658907683 0a6 1513645334 0a7 1428037821 2113664S2 0.66650S3 0.76439S4 0.75901 0.39148S5 0.77967 0.74850S6 0.75861 0.67560S7 0.76042 0.61124S8 0.73486 0.00696 0.74215 0.568121=m 4.6E-10 4.6E-10 4.6E-10 4.6E-10d2 6.5E-10d3 7.00E-7d4 1.1E-14 4.63E-5d5 6.6E-12 2.00E-4d6 4.7E-10 8.89E-4d7 9.80E-9 2.62E-3d8 6.57E-9 6.94E-7 9.55E-8 5.78E-3d9 5.91E-8 4.58E-6 6.00E-7 9.57E-3d10 2.87E-7 8.38E-6 2.24E-6 1.73E-2d11 1.08E-6 1.10E-5 8.41E-6 2.36E-2d12 3.85E-6 1.10E-5 2.66E-5 3.07E-2d13 9.29E-6 1.26E-5 4.68E-5 3.47E-2d14 1.99E-5 2.17E-5 1.05E-4 3.96E-2d15 4.17E-5 4.66E-5 1.60E-4 5.98E-2d16 7.63E-5 8.36E-5 2.68E-4 6.07E-2d17 1.33E-4 1.31E-4 4.26E-4 6.51E-2d18 2.77E-4 2.04E-4 7.05E-4 7.43E-2d19 2.95E-4 3.50E-4 1.03E-3 8.19E-2d20 4.62E-4 4.17E-4 1.32E-3 8.77E-2
28



a full period with m = 231� 19. For G9 there are the additional restrictions that a1 anda7 satisfy condition (5) and ai = 0 for 2 � i � 6. This m is the largest prime under 231such that (m7� 1)=(m� 1) is also prime. The latter property facilitates the veri�cationof condition (c) in the full-period conditions for an MRG. These two generators are takenfrom [73], where one can also �nd more details on the search and a precise de�nition ofthe selection criterion. It turns out that G9 has a very bad �gure of merit S8, and largervalues of dt than G8 for t slightly larger than 7. This is due to the restrictions ai = 0for 2 � i � 6, under which the lower bound (9) is always much larger than d�t for t = 8.The distances between the hyperplanes for G9 are nevertheless much smaller than thecorresponding values of any LCG of Table 1, so this generator is a clear improvementover those. G8 is better in terms of lattice structure, but also much more costly to run,because there are seven products modulo m to compute instead of two at each iterationof the recurrence. The other generators in this table are discussed later.4.3.5 Lacunary IndicesInstead of constructing vectors of successive values as in (7), one can (more generally)construct vectors with values that are a �xed distance apart in the sequence, usinglacunary indices. More speci�cally, let I = fi1; i2; : : : ; itg be a given set of integers andde�ne, for an MRG,Tt(I) = f(ui1+n; : : : ; uit+n) j n � 0; s0 = (x0; : : : ; xk�1) 2 ZZkmg:Consider the lattice Lt(I) spanned by Tt(I) and ZZt, and let dt(I) be the distance betweenthe hyperplanes in this lattice. L'Ecuyer and Couture [77] show how to construct basesfor such lattices, how to compute dt(I), and so on. The following provides \quick-and-dirty" lower bounds on dt(I) [13, 67]:1. If I contains all the indices i such that ak�i+1 6= 0, thendt(I) � 0@1 + kXj=1 a2i1A�1=2 : (10)29



In particular, if xn = (arxn�r+akxn�k) mod m and I = f0; k�r; kg, then d3(I) �(1 + a2r + a2k)�1=2.2. If m can be written as m = Ptj=1 cijaij for some integers cij , thendt(I) � 0@ tXj=1 c2ij1A�1=2 : (11)As a special case of (10), consider the lagged-Fibonacci generator , based on a recur-rence whose only two nonzero coe�cients satisfy ar = �1 and ak = �1. In this case,for I = f0; k � r; kg, d3(I) � 1=p3 � 0:577. The set of all vectors (un; un+k�r; un+k)produced by such a generator lie in successive parallel planes that are at distance 1=p3to each other, and orthogonal to the vector (1; 1; 1). Therefore, apart from the vector(0; 0; 0), all other vectors of this form are contained in only two planes! Speci�c in-stances of this generator are the one proposed by Mitchell and Moore and recommendedby Knuth [57], based on the recurrence xn = (xn�24 + xn�55) mod 2e for e equal to thecomputer's word length, as well as the addrans function in the SUN Unix library [117],based on xn = (xn�5 + xn�17) mod 224. These generators should not be used, at leastnot in their original form.4.3.6 Combined LCGs and MRGsSeveral authors advocated the idea of combining in some way di�erent generators (e.g.,two or three di�erent LCGs), hoping that the composite generator will behave betterthan any of its components alone. See [10, 57, 60, 62, 87] and dozens of other referencesgiven there. Combination can provably increase the period length. Empirical tests showthat it typically improves the statistical behavior as well. Some authors (e.g., [8, 46, 87])have also given theoretical results which (on the surface) appear to \prove" that the out-put of a combined generator is \more random" than (or at least \as random" as) theoutput of each of its components. However, these theoretical results make sense onlyfor random variables de�ned in a probability space setup. For (deterministic) pseudo-random sequences, they prove nothing and can be used only as heuristic arguments to30



support the idea of combination. To assess the quality of a speci�c combined generator,one should make a structural analysis of the combined generator itself, not only analyzethe individual components and assume that combination will make things more random.This implies that the structural e�ect of the combination method must be well under-stood. Law and Kelton [60, Prob. 7.6] give an example where combination makes thingsworse.The two most widely known combination methods are:1. Shu�ing one sequence with another or with itself.2. Adding two or more integer sequences modulo some integer m0, or adding se-quences of real numbers in [0; 1] modulo 1, or adding binary fractions bitwisemodulo 2.Shu�ing one LCG with another can be accomplished as follows. Fill up a table ofsize d with the �rst d output values from the �rst LCG (suggested values of d go from2 up to 128 or more). Then each time a random number is needed, generate an indexI 2 f1; : : : ; dg using the log2(d) most signi�cant bits of the next output value from thesecond LCG, return (as output of the combined generator) the value stored in the tableat position I, then replace this value by the next output value from the �rst LCG.Roughly, the �rst LCG produces the numbers and the second LCG changes the order oftheir occurrence. There are several variants of this shu�ing scheme. In some of them,the same LCG that produces the numbers to �ll up the table is also used to generatethe values of I. A large number of empirical investigations performed over the past30 years strongly support shu�ing and many generators available in software librariesuse it (e.g., [54, 110, 117]). However, it has two important drawbacks: (1) the e�ectof shu�ing is not well-enough understood from the theoretical viewpoint, and (2) onedoes not know how to jump ahead quickly to an arbitrary point in the sequence of thecombined generator.The second class of combination method, by modular addition, is generally betterunderstood theoretically. Moreover, jumping ahead in the composite sequence amounts31



to jumping ahead with each of the individual components, which we know how to do ifthe components are LCGs or MRGs.Consider J MRGs evolving in parallel. The jth MRG is based on the recurrencexj;n = (aj;1xj;n�1 + � � �+ aj;kxj;n�k) mod mj;for j = 1; : : : ; J . We assume that the moduli mj are pairwise relatively prime andthat each recurrence is purely periodic (has zero transient) with period length �j. Let�1; : : : ; �J be arbitrary integers such that for each j, �j and mj have no common factor.De�ne the two combinationszn = 0@ JXj=1 �jxj;n1A mod m1 un = zn=m1 (12)and wn = 0@ JXj=1 �j xj;nmj 1A mod 1: (13)Let k = max(k1; : : : ; kJ) and m = QJj=1mj. The following results were proved in [80] forthe case of MLCG components (k = 1) and in [65] for the more general case:1. The sequences fung and fwng both have period length � = lcm(�1; : : : ; �J) (theleast common multiple of the period lengths of the components).2. The wn obey the recurrencexn = (a1xn�1 + � � �+ akxn�k) mod m; wn = xn=m; (14)where the ai can be computed by a formula given in [65] and do not depend onthe �j.3. One has un = wn + �n, with �� � �n � �+, where �� and �+ can be computedas explained in [65] and are generally extremely small when the mj are close toeach other. 32



The combinations (12) and (13) can then be viewed as e�cient ways to implementan MRG with very large modulus m. A structural analysis of the combination canbe done by analyzing this MRG (e.g., its lattice structure). The MRG componentscan be chosen with only two nonzero coe�cients aij, both satisfying condition (5), forease of implementation, and the recurrence of the combination (14) can still have allof its coe�cients nonzero and large. If each mj is an odd prime and each MRG hasmaximal period length �j = mkjj �1, each �j is even, so � � (mk11 �1) � � � (mkJJ �1)=2J�1and this upper bound is attained if the (mkjj � 1)=2 are pairwise relatively prime [65].The combination (13) generalizes an idea of Wichmann and Hill [126], while (12) isa generalization of the combination method proposed by L'Ecuyer [61]. The lattercombination somewhat scrambles the lattice structure because of the added \noise" �n.
Example 7 L'Ecuyer [65] proposes the following parameters and gives a computercode in the C language that implements (12). Take J = 2 components, �1 = ��2 = 1,m1 = 231 � 1, m2 = 231 � 2000169, k1 = k2 = 3, (a1;1; a1;2; a1;3) = (0; 63308;�183326),and (a2;1; a2;2; a2;3) = (86098; 0;�539608). Each component has period length �j =m3j � 1, and the combination has period length � = �1�2=2 � 2185. The MRG (14)that corresponds to the combination is called G10 in Table 2, where distances betweenhyperplanes for the associated lattice are given. Generator G10 requires four modularproducts at each step of the recurrence, so it is slower than G9 but faster than G8. Thecombined MLCG originally proposed by L'Ecuyer [61] also has an approximating LCGcalled G11 in the table. Note that this combined generator was originally constructed onthe basis of the lattice structure of the components only, without examining the latticestructure of the combination. Slightly better combinations of the same size have beenconstructed since this original proposal [80, 77]. Other combinations of di�erent sizesare given in [68]. 33



4.3.7 Matrix LCGs and MRGsA natural way to generalize LCGs and MRGs is to consider linear recurrences for vectors,with matrix coe�cientsXn = (A1Xn�1 + � � �+ AkXn�k) mod m; (15)where A1; : : : ; Ak are L�L matrices and each Xn is an L-dimensional vector of elementsof ZZm, which we denote by Xn = 0B@ xn;1...xn;L1CA :At each step, one can use each component of Xn to produce a uniform variate:unL+j�1 = xn;j=m. Niederreiter [105] introduced this generalization and calls it themultiple recursive matrix method for the generation of vectors. The recurrence (15) canalso be written as a matrix LCG of the form Xn = AXn�1 mod m, whereA = 0BBB@ 0 I : : : 0... ... . . . ...0 0 : : : IAk Ak�1 : : : A11CCCA and Xn = 0BBBB@ XnXn+1...Xn+k�11CCCCA (16)are a matrix of dimension kL � kL and a vector of dimension kL, respectively (here Iis the L � L identity matrix). This matrix notation applies to the MRG as well, withL = 1.Is the matrix LCG more general than the MRG? Not much. If a k-dimensionalvector Xn follows the recurrence Xn = AXn�1 mod m, where the k � k matrix A has aprimitive characteristic polynomial P (z) = zk � a1zk�1 � � � � � ak, then Xn also followsthe recurrence [48, 62, 101]Xn = (a1Xn�1 + � � �+ akXn�k) mod m (17)So each component of the vector Xn evolves according to (2). In other words, one simplyhas k copies of the same MRG sequence in parallel, usually with some shifting betweenthose copies. This also applies to the matrix MRG (15), since it can be written as a34



matrix LCG of dimension kL and therefore corresponds to kL copies of the same MRGof order kL (and maximal period length mkL � 1). The di�erence with the single MRG(2) is that instead of taking successive values from a single sequence, one takes valuesfrom di�erent copies of the same sequence, in a round-robin fashion. Observe also thatwhen using (17), the dimension of Xn in this recurrence (i.e., the number of parallelcopies) does not need to be equal to k.4.3.8 Linear Recurrences with CarryConsider a generator based on the following recurrence:xn = (a1xn�1 + � � �+ akxn�k + cn�1) mod b; (18)cn = (a1xn�1 + � � �+ akxn�k + cn�1) div b; (19)un = xn=b:where \div" denotes the integer division. For each n, xn 2 ZZb, cn 2 ZZ, and the state atstep n is sn = (xn; : : : ; xn+k�1; cn). As in [14, 16, 88], we call this a multiply-with-carry(MWC) generator. The idea was suggested in [58, 91]. The recurrence looks like that ofan MRG, except that a carry cn is propagated between the steps. What is the e�ect ofthis carry?Assume that b is a power of 2, which is very nice form the implementation viewpoint.De�ne a0 = �1, m = kX̀=0 a`b`;and let a be such that ab mod m = 1 (a is the inverse of b in arithmetic modulo m).Note that m could be either positive or negative, but for simplicity we now assume thatm > 0. Consider the LCG:zn = azn�1 mod m; wn = zn=m: (20)There is a close correspondence between the LCG (20) and the MWC generator, assum-ing that their initial states agree [16]. More speci�cally, ifwn = 1Xi=1 xn+i�1b�i (21)35



holds for n = 0, then it holds for all n. As a consequence, jun�wnj � 1=b for all n. Forexample, if b = 232, then un and wn are the same up to 32 bits of precision! The MWCgenerator can thus be viewed as just another way to implement (approximately) a LCGwith huge modulus and period length. It also inherits from this LCG an approximatelattice structure, which can be analyzed as usual.The LCG (20) is purely periodic, so each state zn is recurrent (none is transient).On the other hand, the MWC has an in�nite number of states (since we imposed nobound on cn) and most of them turn out to be transient. How can one characterize therecurrent states? They are (essentially) the states s0 that correspond to a given z0 via(20){(21). Couture and L'Ecuyer [16] give necessary and su�cient conditions for a states0 to be recurrent. In particular, if a` � 0 for ` � 1, all the recurrent states satisfy0 � cn < a1 + � � �+ ak. In view of this inequality, we want the a` to be small, for theirsum to �t into a computer word. More speci�cally, one can impose a1 + � � � + ak � b.Now b is a nice upper bound on the cn as well as on the xn.Since b is a power of 2, a is a quadratic residue and so cannot be primitive mod m.Therefore, the period length cannot reach m� 1 even if m is prime. But if (m� 1)=2 isodd and 2 is primitive mod m (e.g., if (m� 1)=2 is prime), then (20) has period length� = (m� 1)=2.Couture and L'Ecuyer [16] show that the lattice structure of the LCG (20) satis�esthe following: In dimensions t � k, the distances dt do not depend on the parametersa1; : : : ; ak, but only on b, while in dimension t = k + 1, the shortest vector in the duallattice to Lt is (a0; : : : ; ak), so thatdt = (1 + a21 + � � �+ a2k)�1=2: (22)The distance dk+1 is then minimized if we put all the weight on one coe�cient a`. Itis also better to put more weight on ak, to get a larger m. So one should choose ak closeto b, with a0 + � � �+ ak � b. Marsaglia [88] proposed two speci�c parameter sets. Theyare analyzed in [16], where a better set of parameters in terms of the lattice structureof the LCG is also given. 36



Special cases of the MWC include the add-with-carry (AWC) and subtract-with-borrow (SWB) generators, originally proposed by Marsaglia and Zaman [91] and subse-quently analyzed in [13, 122]. For the AWC, put ar = ak = �a0 = 1 for 0 < r < k andall other a` equal to zero. This gives the simple recurrencexn = (xn�r + xn�k + cn�1) mod b;cn = I[xn�r + xn�k + cn�1 � b];where I denotes the indicator function, equal to 1 if the bracketted inequality is true andto 0 otherwise. The SWB is similar, except that either ar or ak is �1 and the carry cn is0 or �1. The correspondence between AWC/SWB generators and LCGs was establishedin [122].Equation (22) tells us very clearly that all AWC/SWB generators have a bad lat-tice structure in dimension k + 1. A little more can be said when looking at thelacunary indices: For I = f0; r; kg, one has d3(I) = 1=p3 and all vectors of theform (wn; wn+r; wn+k) produced by the LCG (20) lie in only two planes in the three-dimensional unit cube, exactly as for the lagged-Fibonacci generators discussed in Sec-tion 4.3.5. Obviously, this is bad.Perhaps one way to get around this problem is to take only k successive outputvalues, then skip (say) � values, take another k successive ones, skip another �, and soon. L�uscher [85] has proposed such an approach, with speci�c values of � for a speci�cSWB generator, with theoretical justi�cation based on chaos theory. James [56] gives aFortran implementation of L�uscher's generator. The system Mathematica uses a SWBgenerator ([127, p. 1019]), but the documentation does not specify if it skips values.4.3.9 Digital Method: LFSR, GFSR, TGFSR, etc., and Their CombinationThe MRG (2), matrix MRG (15), combined MRG (12), and MWC (18{19) have res-olution 1=m, 1=m, 1=m1, and 1=b, respectively. (The resolution is the largest numberx such that all output values are multiples of x.) This could be seen as a limitation.To improve the resolution, one can simply take several successive xn to construct each37



output value un. Consider the MRG. Choose two positive integers s and L � k, andrede�ne un = LXj=1xns+j�1m�j: (23)Call s the step size and L the number of digits in the m-adic expansion. The state atstep n is now sn = (xns; : : : ; xns+k�1). The output values un are multiples ofm�L insteadof m�1. This output sequence, usually with L = s, is called a digital multistep sequence[64, 102]. Taking s > L means that s � L values of the sequence fxng are skipped ateach step of (23). If the MRG sequence has period � and if s has no common factor with�, the sequence fung also has period �.Now, it is no longer necessary for m to be large. A small m with large s and L cando as well. In particular, one can take m = 2. Then fxng becomes a sequence of bits(zeros and ones) and the un are constructed by juxtaposing L successive bits from thissequence. This is called a linear feedback shift register (LFSR) or Tausworthe generator[41, 64, 102, 118], although the bits of each un are often �lled in reverse order thanin (23). An e�cient computer code that implements the sequence (23), for the casewhere the recurrence has the form xn = (xn�r + xn�k) mod 2 with s � r and 2r > k,can be found in [66, 120, 121]. For specialized jump-ahead algorithms, see [22, 66].Unfortunately, such simple recurrences lead to LFSR generators with bad structuralproperties (see [11, 66, 97, 120] and other references therein). But combining severalrecurrences of this type can give good generators.Consider J LFSR generators, where the jth one is based on a recurrence fxj;ngwith primitive characteristic polynomial Pj(z) of degree kj (with binary coe�cients),an m-adic expansion to L digits, and a step size sj such that sj and the period length�j = 2kj � 1 have no common factor. Let fuj;ng be the output sequence of the jthgenerator and de�ne un as the bitwise exclusive-or (i.e., bitwise addition modulo 2) ofu1;n; : : : ; uj;n. If the polynomials P1(z); : : : ; PJ(z) are pairwise relatively prime (no pairof polynomials has a common factor), the period length � of the combined sequence fungis equal to the least common multiple of the individual periods �1; : : : ; �J . These �j canbe relatively prime, so it is possible here to have � = QJj=1 �j. The resulting combinedgenerator is also exactly equivalent to a LFSR generator based on a recurrence with38



characteristic polynomial P (z) = P1(z) � � �PJ(z). All of this is shown in [121], wherespeci�c combinations with two components are also suggested. For good combinationswith more components, see [66]. Wang and Compagner [125] also suggested similarcombinations, with much longer periods. They recommended constructing the combi-nation so that the polynomial P (z) has approximately half of its coe�cients equal to1. In a sense, the main justi�cation for combined LFSR generators is the e�cient im-plementation of a generator based on a (reducible) polynomial P (z) with many nonzerocoe�cients.The digital method can be applied to the matrix MRG (15) or to the parallel MRG(17) by making a digital expansion of the components of Xn (assumed to have dimensionL): un = LXj=1xn;jm�j: (24)The combination of (15) with (24) gives the multiple recursive matrix method of Nieder-reiter [103]. For the matrix LCG, L'Ecuyer [64] shows that if the shifts between thesuccessive L copies of the sequence are all equal to some integer d having no commonfactor with the period length � = mk � 1, the sequence (24) is exactly the same asthe digital multistep sequence (23) with s equal to the inverse of d modulo m. Theconverse also holds. In other words, (23) and (24), with these conditions on the shifts,are basically two di�erent implementations of the same generator. So one can be ana-lyzed by analyzing the other, and vice versa. If one uses the implementation (24), onemust be careful with the initialization of X0; : : : ; Xk�1 in (17) to maintain the corre-spondence: The shift between the states (x0;j; : : : ; xk�1;j) and (x0;j+1; : : : ; xk�1;j+1) inthe MRG sequence must be equal to the proper value d for all j.The implementation (24) requires more memory than (23), but may give a fastergenerator. An important instance of this is the generalized feedback shift register (GFSR)generator [43, 84, 123] which we now describe. Takem = 2 and L equal to the computer'sword length. The recurrence (17) can then be computed by a bitwise exclusive-or of theXn�j for which aj = 1. In particular, if the MRG recurrence has only two nonzero39



coe�cients, say ak and ar, we obtainXn = Xn�r �Xn�k;where � denotes the bitwise exclusive-or. The output is then constructed via the binaryfractional expansion (24). This GFSR can be viewed as a di�erent way to implement aLFSR generator, provided that it is initialized accordingly, and the structural proper-ties of the GFSR can then be analyzed by analyzing those of the corresponding LFSRgenerator [44, 64].For the recurrence (17), we need to memorize kL integers in ZZm. With this memorysize, one should expect a period length close to mkL, but the actual period lengthcannot exceed mk � 1. A big waste! Observe that (17) is a special case of (15), withAi = aiI. An interesting idea is to \twist" the recurrence (17) slightly so that each aiIis replaced by a matrix Ai such that the corresponding recurrence (15) has full periodlength mkL� 1 while its implementation remains essentially as fast as (17). Matsumotoand Kurita [95, 96] proposed a speci�c way to do this for GFSR generators and calledthe resulting generators twisted GFSR (TGFSR). Their second paper and [98, 120] pointout some defects in the generators proposed in their �rst paper, proposes better speci�cgenerators, and give nice computer codes in C. Investigations are currently made to �ndother twists with good properties. The multiple recursive matrix method of [103] is ageneralization of these ideas.4.3.10 Equidistribution Properties for the Digital MethodSuppose that we partition the unit hypercube [0; 1)t into mt` cubic cells of equal size.This is called a (t; `)-equidissection in base m. A set of points is said to be (t; `)-equidistributed if each cell contains the same number of points from that set. If the setcontains mk points, the (t; `)-equidistribution is possible only for ` � bk=tc. For a givendigital multistep sequence, letTt = fu0 = (u0; : : : ; ut�1) j (x0; : : : ; xk�1) 2 ZZkmg (25)40



(where repeated points are counted as many times as they appear in Tt) and `t =min(L; bk=tc). If the set Tt is (t; `t)-equidistributed for all t � k, we call it a maximallyequidistributed (ME) set and say that the generator is ME. If it has the additionalproperty that for all t, for `t < ` � L, no cell of the (t; `)-equidissection contains morethan one point, we also call it collision-free (CF). ME-CF generators have their sets ofpoints Tt very evenly distributed in the unit hypercube, in all dimensions t.Full-period LFSR generators are all (bk=sc; s)-equidistributed. Full-period GFSRgenerators are all (k; 1)-equidistributed, but their (k; `)-equidistribution for ` > 1depends on the initial state (i.e., on the shifts between the di�erent copies of theMRG). Fushimi and Tezuka [45] give a necessary and su�cient condition on this initialstate for (t; L)-equidistribution, for t = bk=Lc. The condition says that the tL bits(x0;1; : : : ; x0;L; : : : ; xt�1;1; : : : ; xt�1;L) must be independent, in the sense that the tL � kmatrix which expresses them as a linear transformation of (x0;1; : : : ; xk�1;1) has (full)rank tL. Fushimi [44] gives an initialization procedure satisfying this condition.Couture et al. [17] show how the (t; `)-equidistribution of simple and combined LFSRgenerators can be analyzed via the lattice structure of an equivalent LCG in a space offormal series. A di�erent (simpler) approach is taken in [66]: Check if the matrix thatexpresses the �rst ` bits of un as a linear transformation of (x0; : : : ; xk�1) has full rank.This is a necessary and su�cient condition for (t; `)-equidistribution.An ME LFSR generator based on the recurrence xn = (xn�607+xn�273) mod 2, withs = 512 and L = 23, is given in [123]. But as stated previously, only two nonzerocoe�cients for the recurrence is much too few. L'Ecuyer [66, 70] gives the results ofcomputer searches for ME and ME-CF combined LFSR generators with J = 2; 3; 4; 5components, as described in subSection 4.3.9. Each search was made within a classwith each component j based on a characteristic trinomial Pj(z) = zkj � zrj � 1, withL = 32 or L = 64, and step size sj such that sj � rj and 2rj > kj. The period length is� = (2k1 � 1) � � � (2kJ � 1) in most cases, sometimes slightly smaller. The searches werefor good parameters rj and sj. We summarize here a few examples of search results.For more details, as well as speci�c implementations in the C language, see [66, 70].41



Example 8(a) For J = 2, k1 = 31, and k2 = 29, there are 2565 parameter sets that satisfy theconditions above. None of these combinations is ME. Speci�c combinations whichare nearly ME, within this same class, can be found in [121].(b) Let J = 3, k1 = 31, k2 = 29, and k3 = 28. In an exhaustive search among 82080possibilities satisfying our conditions within this class, 19 ME combinations werefound, and 3 of them are also CF.(c) Let J = 4, k1 = 31, k2 = 29, k3 = 28, and k4 = 25. Here, in an exhaustive searchamong 3283200 possibilities, we found 26195 ME combinations, and 4744 of themalso CF.These results illustrate the fact that ME combinations are much easier to �nd as Jincreases. This appears to be due to more possibilities to \�ll up" the coe�cients of P (z)when it is the product of more trinomials. Since GFSR generators can be viewed as away to implement fast LFSR generators, these search methods and results can be usedas well to �nd good combined GFSRs, where the combination is de�ned by a bitwiseexclusive-or as in the LFSR case.One may strenghten the notion of (t; `)-equidistribution as follows: Instead of lookingonly at equidissections comprised of cubic volume elements of identical sizes, look at moregeneral partitions. Such a stronger notion is that of a (q; k; t)-net in base m, where thereshould be the same number of points in each box for any partition of the unit hypercubeinto rectangular boxes of identical shape and equal volume mq�k, with the length of eachside of the box equal to a multiple of 1=m. Niederreiter [102] de�nes a �gure of meritr(t) such that for all t > bk=Lc, the mk points of Tt for (23) form a (q; k; t)-net in basem with q = k � r(t). A problem with r(t) is the di�culty to compute it for medium andlarge t (say, t > 8). 42



4.4 NONLINEAR METHODSAn obvious way to remove the linear (and perhaps too regular) structure is to use anonlinear transformation. There are basically two classes of approaches:1. Keep the transition function T linear, but use a nonlinear transformation G toproduce the output.2. Use a nonlinear transition function T .Several types of nonlinear generators have been proposed over the last decade or so,and an impressive volume of theoretical results have been obtained for them. See, forexample, [31, 34, 59, 78, 102, 104] and other references given there. Here, we give a briefoverview of this rapidly developing area.Nonlinear generators avoid lattice structures. Typically, no t-dimensional hyperplanecontains more than t overlapping t-tuples of successive values. More important, theiroutput behaves much like \truly" random numbers, even over the entire period, withrespect to discrepancy. Roughly, there are lower and upper bounds on their discrepancy(or in some cases on the average discrepancy over a certain set of parameters) whoseasymptotic order (as the period length increases to in�nity) is the same as that of an IIDU(0; 1) sequence of random variables. They have also succeeded quite well in empiricaltests performed so far [49]. Fast implementations with speci�c well-tested parameters arestill under development, although several generic implementations are already available[49, 71].4.4.1 Inversive Congruential GeneratorsTo construct a nonlinear generator with long period, a �rst idea is simply to add anonlinear twist to the output of a known generator. For example, take a full-periodMRG with prime modulus m and replace the output function un = xn=m byzn = (~xn+1~x�1n ) mod m and un = zn=m; (26)43



where ~xi denotes the ith nonzero value in the sequence fxng and ~x�1n is the inverse of~xn modulo m. (The zero values are skipped because they have no inverse.) For xn 6= 0,its inverse x�1n can be computed by the formula x�1n = xm�2n mod m, with O(logm)multiplications modulo m. The sequence fzng has period mk�1, under conditions givenin [31, 102]. This class of generators was introduced and �rst studied in [28, 27, 30]. Fork = 2, (26) is equivalent to the recurrencezn = ( (a1 + a2z�1n�1) mod m if zn�1 6= 0;a1 if zn�1 = 0, (27)where a1 and a2 are the MRG coe�cients.A more direct approach is the explicit inversive congruential method of [32], de�nedas follows. Let xn = an + c for n � 0, where a 6= 0 and c are in ZZm and m is prime.Then, de�ne zn = x�1n = (an + c)m�2 mod m and un = zn=m: (28)This sequence has period � = m. According to [34], this family of generators seems to en-joy the most favorable properties among the currently proposed inversive and quadraticfamilies. As a simple illustrative example, take m = 231 � 1 and a = c = 1. (However,at the moment, we are not in a position to recommend these particular parameters norany other speci�c ones.)Inversive congruential generators with power-of-2 moduli have also been studied[30, 31, 35]. However, they have have more regular structures than those based onprime moduli [31, 34]. Their low-order bits have the same short period lengths as forthe LCGs. The idea of combined generators, discussed earlier for the linear case, alsoapplies to nonlinear generators and o�ers some computational advantages. Huber [52]and Eichenauer-Herrmann [33] introduced and analyzed the following method. Take Jinversive generators as in (27), with distinct prime moduli m1; : : : ; mJ , all larger than4, and full period length �j = mj. For each generator j, let zj;n be the state at step nand let uj;n = zj;n=mj. The output at step n is de�ned by the following combination:un = (u1;n + � � �+ uJ;n) mod 1:44



The sequence fung turns out to be equivalent to the output of an inversive generator(27) with modulus m = m1 � � �mJ and period length � = m. Conceptually, this ispretty similar to the combined LCGs and MRGs discussed previously, and provides aconvenient way to implement an inversive generator with large modulus m. Eichenauer-Herrmann [33] shows that this type of generator has favorable asymptotic discrepancyproperties, much like (26){(28).4.4.2 Quadratic Congruential GeneratorsSuppose that the transformation T is quadratic instead of linear. Consider the recurrencexn = (ax2n�1 + bxn�1 + c) mod m;where a; b; c 2 ZZm and xn 2 ZZm for each n. This is studied in [29, 37, 57, 102]. Ifm is a power of 2, this generator has full period (� = m) if and only if a is even,(b � a) mod 4 = 1, and c is odd. Its t-dimensional points turn out to lie on a union ofgrids. Also, the discrepancy tends to be too large. Our usual caveat against power-of-2moduli applies again.4.4.3 BBS and Other Cryptographic GeneratorsThe BBS generator, explained in Section 4.2, is conjectured to be polynomial-time per-fect. This means that for a large enough size k, a BBS generator with properly (ran-domly) chosen parameters is practically certain to behave very well from the statisticalpoint of view. However, it is not clear how large k must be and how K can be chosen inpractice for the generator to be really safe. The speed of the generator slows down withk, since at each step we must square a 2k-bit integer modulo another 2k-bit integer. Animplementation based on fast modular multiplication is proposed by Moreau [99].Other classes of generators, conjectured to be polynomial-time perfect, have beenproposed. From empirical experiments, they have appeared no better than the BBS.See [5, 59, 78] for overviews and discussions. An interesting idea, pursued for instance in45



[1], is to combine a slow but cryptographically strong generator (e.g., a polynomial-timeperfect one) with a fast (but unsecure) one. The slow generator is used sparingly, mostlyin a preprocessing step. The result is an interesting compromise between speed, size,and security. In [1], it is also suggested to use a block cipher encryption algorithm forthe slow generator. These authors actually use triple-DES (three passes over the well-known data encryption standard algorithm, with three di�erent keys), combined with alinear hashing function de�ned by a matrix. The keys and the hashing matrix must be(truly) random. Their fast generator is implemented with a six-regular expander graph(see their paper for more details).4.5 EMPIRICAL STATISTICAL TESTINGStatistical testing of random number generators is indeed a very empirical and heuristicactivity. The main idea is to seek situations where the behavior of some function of thegenerator's output is signi�cantly di�erent than the normal or expected behavior of thesame function applied to a sequence of IID uniform random variables.Example 9 As a simple illustration, suppose that one generates n random numbersfrom a generator whose output is supposed to imitate IID U(0; 1) random variables.Let T be the number of values that turn out to be below 1/2, among those n. Forlarge n, T should normally be not too far from n=2. In fact, one should expect T tobehave like a binomial random variable with parameters (n; 1=2). So if one repeatsthis experiment several times (e.g., generating N values of T ), the distribution of thevalues of T obtained should resemble that of the binomial distribution (and the normaldistribution with mean n=2 and standard deviation pn=2 for large n). If N = 100 andn = 10000, the mean and standard deviation are 5000 and 50, respectively. With theseparameters, if one observes, for instance, that 12 values of T are less than 4800, or that98 values of T out of 100 are less than 5000, one would readily conclude that somethingis wrong with the generator. On the other hand, if the values of T behave as expected,one may conclude that the generator seems to reproduce the correct behavior for this46



particular statistic T (and for this particular sample size). But nothing prevents otherstatistics than this T to behave wrongly.4.5.1 General SetupDe�ne the null hypothesis H0 as: \The generator's output is a sequence of IID U(0; 1)random variables". Formally, this hypothesis is false, since the sequence is periodic andusually deterministic (except parhaps for the seed). But if this cannot be detected byreasonable statistical tests, one may assume that H0 holds anyway. In fact, what reallycounts in the end is that the statistics of interest in a given simulation have (sample)distributions close enough to their theoretical ones.A statistical test for H0 can be de�ned by any function T of a �nite number of U(0; 1)random variables, for which the distribution under H0 is known or can be approximatedwell enough. The random variable T is called the test statistic. The statistical test triesto �nd empirical evidence against H0.When applying a statistical test to a random number generator, a single-level pro-cedure computes the value of T , say t1, then computes the p-value�1 = P [T > t1 j H0];and, in the case of a two-sided test, rejects H0 if �1 is too close to either 0 or 1. Asingle-sided test will reject only of �1 is too close to 0, or only if it is too close to 1.The choice of rejection area depends on what the test aims to detect. Under H0, �1 is aU(0; 1) random variable.A two-level test obtains (say) N \independent" copies of T , denoted T1; : : : ; TN , andcomputes their empirical distribution F̂N . This empirical distribution is then comparedto the theoretical distribution of T under H0, say F , via a standard goodness-of-�t test,such as the Kolmogorov{Smirnov (KS) or Anderson{Darling tests [25, 115]. One versionof the KS goodness-of-�t test uses the statisticDN = sup�1<x<1 jF̂N(x)� F (x)j;47



for which an approximation of the distribution under H0 is available, assuming that thedistribution F is continuous [25]. Once the value dN of the statistic DN is known, onecomputes the p-value of the test, de�ned as�2 = P [DN > dN j H0];which is again a U(0; 1) random variable under H0. Here one would reject H0 if �2 istoo close to 0.Choosing N = 1 yields a single-level test. For a given test and a �xed computingbudget, the question arises of what is best: To choose a small N (e.g., N = 1) andbase the test statistic T on a large sample size, or the opposite? There is no universalwinner. It depends on the test and on the alternative hypothesis. The rationale fortwo-level testing is to test the sequence not only globally, but also locally, by lookingat the distribution of values of T over shorter subsequences [57]. In most cases, whentesting random number generators, N = 1 turns out to be the best choice because thesame regularities or defects of the generators tend to repeat themselves over all long-enough subsequences. But it also happens for certain tests that the cost of computingT increases faster than linearly with the sample size, and this gives another argumentfor choosing N > 1.In statistical analyses where a limited amount of data is available, it is commonpractice to �x some signi�cance level � in advance and reject H0 when and only whenthe p-value is below �. Popular values of � are 0.05 and 0.01 (mainly for historicalreasons). When testing random number generators, one can always produce an arbitraryamount of data to make the test more powerful and come up with a clean-cut decisionwhen suspicious p-values occur. We would thus recommend the following strategy. If theoutcome is clear, for example if the p-value is less than 10�10, reject H0. Otherwise, ifthe p-value is suspicious (0.005, for example), then increase the sample size or repeat thetest with other segments of the sequence. In most cases, either suspicion will disappearor clear evidence against H0 will show up rapidly.When H0 is not rejected, this somewhat improves con�dence in the generator butnever proves that it will always behave correctly. It may well be that the next test48



T to be designed will be the one that catches the generator. Generally speaking, themore extensive and varied is the set of tests that a given generator has passed, the morefaith we have in the generator. For still better con�dence, it is always a good idea torun important simulations twice (or more), using random number generators of totallydi�erent types.4.5.2 Available Batteries of TestsThe statistical tests described by Knuth [57] have long been considered the \standard"tests for random number generators. A Fortran implementation of (roughly) this set oftests is given in the package TESTRAND [24]. A newer battery of tests is DIEHARD,designed by Marsaglia [87, 89]. It contains more stringent tests than those in [57], inthe sense that more generators tend to fail some of the tests. An extensive testingpackage called TestU01 [71], that implements most of the tests proposed so far, aswell as several classes of generators implemented in generic form, is under development.References to other statistical tests applied to random number generators can be foundin [63, 64, 71, 75, 74, 69, 79, 116].Simply testing uniformity, or pair correlations, is far from enough. Good tests aredesigned to catch higher-order correlation properties or geometric patterns of the suc-cessive numbers. Such patterns can easily show up in certain classes of applications[39, 49, 75]. Which are the best tests? No one can really answer this question. If thegenerator is to be used to estimate the expectation of some random variable T by gener-ating replicates of T , the best test would be the one based on T as a statistic. But thisis impractical, since if one knew the distribution of T , one would not use simulation toestimate its mean. Ideally, a good test for this kind of application should be based ona statistic T 0 whose distribution is known and resembles that of T . But such a test israrely easily available. Moreover, only the user can apply it. When designing a generalpurpose generator, one has no idea of what kind of random variable interests the user.So, the best the designer can do (after the generator has been properly designed) is toapply a wide variety of tests that tend to detect defects of di�erent natures.49



4.5.3 Two Examples of Empirical TestsFor a short illustration, we now apply two statistical tests to some of the random numbergenerators discussed previously. The �rst test is a variant of the well-know serial testand the second one is a close-pairs test. More details about these tests, as well as re�nedvariants, can be found in [57, 74, 75, 79].Both tests generate n nonoverlapping vectors in the t-dimensional unit cube [0; 1)t.That is, they produce the point set:Pt = fU i = (Ut(i�1); : : : ; Uti�1); i = 1; : : : ; ng;where U0; U1; : : : is the generator's output. Under H0, Pt contains n IID random vectorsuniformly distributed over the unit hypercube.For the serial test, we construct a (t; `)-equidissection in base 2 of the hypercube (seeSection 4.3.10), and compute how many points fall in each of the k = 2t` cells. Morespeci�cally, let Xj be the number of points U i falling in cell j, for j = 1; : : : ; k, andde�ne the chi-square statistic X2 = kXj=1 (Xj � n=k)2n=k : (29)Under H0, the exact mean and variance of X2 are � = E[X2] = k � 1 and �2 =Var[X2] = 2(k�1)(n�1)=n, respectively. Moreover, if n!1 for �xed k, X2 convergesin distribution to a chi-square random variable with k � 1 degrees of freedom, whereasif n ! 1 and k ! 1 simultaneously so that n=k !  for some constant , (X2 ��)=� converges in distribution to a N(0; 1) (a standard normal) random variable. Mostauthors use a chi-square approximation to the distribution of X2, with n=k � 5 (say)and very large n. But one can also take k � n and use the normal approximation, asin the forthcoming numerical illustration.For the close-pairs test, let Dn;i;j be the Euclidean distance between the points U jand U i in the unit torus, i.e., where the opposite faces of the hypercube are identi�edso that points facing each other on opposite sides become close to each other. For s � 0,50



let Yn(s) be the number of distinct pairs of points i < j such Dtn;i;jVtn(n � 1)=2 � s,where Vt is the volume of a ball of radius 1 in the t-dimensional real space. Under H0,for any constant s1 > 0, as n ! 1, the process fYn(s); 0 � s � s1g converges weaklyto a Poisson process with unit rate. Let 0 = Tn;0 � Tn;1 � Tn;2 � � � � be the jump timesof the process Yn, and let Wn;i = 1 � exp[�(Tn;i � Tn;i�1)]. For a �xed integer m > 0and large enough n, the random variables Wn;1; : : : ;Wn;m are approximately IID U(0; 1)under H0. To compare their empirical distribution to the uniform, one can compute, forexample, the Anderson{Darling statisticA2m = �m� 1m mXi=1 n(2i� 1) ln(W(n;i)) + (2m+ 1� 2i) ln(1�W(n;i))o ;and reject H0 if the p-value is too small (i.e., if A2m is too large).These tests have been applied to the generators G1 to G11 in Tables 4.1 and 4.2. Wetook N = 1 and dimension t = 3. We applied two instances of the serial test, one namedST1, with n = 220 and ` = 9, which gives k = 227 and n=k = 1=128, and the second onenamed ST2, with n = 222 and ` = 10, so k = 230 and n=k = 1=256. For the close-pairs(CP) test, we took n = 218 and m = 32. In each case, 3n random numbers were used,and this value is much smaller than the period length of the generators tested. For allgenerators, at the beginning of the �rst test, we used the initial seed 12345 when a singleinteger was needed and the vector (12345; : : : ; 12345) when a vector was needed. Theseed was not reset between the tests. Table 3 gives the p-values of these tests for G1 toG5. For G6 to G11, all p-values remained inside the interval (0:01; 0:99).For the serial test, the p-values that are too close to 1 (e.g., ST1 and ST2 for G1)indicate that the n points are too evenly distributed among the k cells compared to whatone would expect from random points (X2 is too small). On the other hand, the verysmall p-values indicate that the points tend to go signi�cantly more often in certain cellsthan in others (X2 is too large). The p-values less than 10�15 for the CP test stem fromthe fact that the jumps of the process Yn tend to be clustered (and often superposed),because there are often equalities (or almost) among the small Dn;i;j's, due to the latticestructure of the generator [75, 112]. This implies that several Wn;i are very close tozero, and the Anderson-Darling statistic is especially sensitive for detecting this type of51



Table 3: The p-values of two empirical tests applied to Generators G1 to G11.Generator ST1 ST2 CPG1 1� 9:97� 10�6 > 1� 10�15 < 10�15G2 0:365 < 10�15 < 10�15G3 1� 2:19� 10�4 < 10�15 < 10�15G4 < 10�15 < 10�15 < 10�15G5 0:950 > 1� 10�15 < 10�15problem. As a general rule of thumb, all LCGs and MRGs, whatever be the quality oftheir lattice structure, fail spectacularly this close-pairs test with N = 1 and m = 32when n exceeds the square root of the period length [75].G6 and G7 pass these tests, but will soon fail both tests if we increase the samplesize. For G8 to G11, on the other hand, the sample size required for clear failure is solarge that the test becomes too long to run in reasonable time. This is especially truefor G8 and G10.One could raise the issue of whether these tests are really relevant. As mentioned inthe previous subsection, the relevant test statistics are those that behave similarly as therandom variable of interest to the user. So, relevance depends on the application. Forsimulations that deal with random points in space, the close-pairs test could be relevant.Such simulations are performed, for example, to estimate the (unknown) distribution ofcertain random variables in spatial statistics [19]. As an illustration, suppose one wishesto estimate the distribution of mini;j Dn;i;j for some �xed n, by Monte Carlo simulation.For this purpose I would not trust the generators G1 to G5. The e�ect of failing the serialor close-pairs test in general is unclear. In many cases, if not so many random numbersare used and if the application does not interact constructively with the structure ofthe point set produced by the generator, no bad e�ect will show up. On the otherhand, simulations using more than, say, 232 random numbers are becoming increasinglycommon. Clearly, G1 to G5 and all other generators of that size are unsuitable for suchsimulations. 52



4.5.4 Empirical Testing: SummaryExperience from years of empirical testing with di�erent kinds of tests and di�erentgenerator families provides certain guidelines [49, 63, 75, 74, 69, 89, 81], Some of theseguidelines are summarized in the following remarks.1. Generators with period length less than 232 (say) can now be considered as \babytoys" and should not be used in general software packages. In particular, all LCGsof that size fail spectacularly several tests that run in a reasonably short time anduse much less random numbers than the period length.2. LCGs with power-of-2 moduli are easier to crack than those with prime moduli,especially if we look at lower-order bits.3. LFSRs and GFSRs based on primitive trinomials, or lagged-Fibonacci and AWC/SWBgenerators, whose structure is too simple in moderately large dimension, also failseveral simple tests.4. Combined generators with long periods and good structural properties do well inthe tests. When a large fraction of the period length is used, nonlinear inversivegenerators with prime modulus do better than the linear ones.5. In general, generators with good theoretical �gures of merit (e.g., good latticestructure or good equidistribution over the entire period, when only a small frac-tion of the period is used) behave better in the tests. As a crude general rule,generators based on more complicated recurrences (e.g., combined generators) andgood theoretical properties perform better.4.6 PRACTICAL RANDOM NUMBER PACKAGES4.6.1 Recommended ImplementationsAs stated previously, no random number generator can be guaranteed against all pos-sible defects. However, there are generators with fairly good theoretical support,53



that have been extensively tested, and for which computer codes are available. Wenow give references to such implementations. Some of them are already mentionedearlier. We do not reproduce the computer codes here, but the user can easily�nd them from the references. More references and pointers can be found from thepages http://www.iro.umontreal.ca/�lecuyer and http://random.mat.sbg.ac.aton the World Wide Web.Computer implementations that this author can suggest for the moment includethose of the MRGs given in [73], the combined MRGs given in [65, 68], the combinedTausworthe generators given in [66, 70], the twisted GFSRs given in [96, 98], and perhapsthe RANLUX code of [56].4.6.2 Multigenerator Packages with Jump-Ahead FacilitiesGood simulation languages usually o�er many (virtual) random number generators,often numbered 1, 2, 3, . . . . In most cases this is the same generator but starting withdi�erent seeds, widely spaced in the sequence. L'Ecuyer and Côt�e [76] have constructeda package with 32 generators (which can be easily extended to 1024). Each generatoris in fact based on the same recurrence (a combined LCG of period length near 261),with seeds spaced 250 values apart. Moreover, each subsequence of 250 values is splitfurther into 220 segments of length 230. A simple procedure call permits one to haveany of the generators jump ahead to the beginning of its next segment, or its currentsegment, or to the beginning of its �rst segment. The user can also set the initial seedof the �rst generator to any admissible value (a pair of positive integers) and all otherinitial seeds are automatically recalculated so that they remain 250 values apart. Thisis implemented with e�cient jump-ahead tools. A boolean switch can also make anygenerator produce antithetic variates if desired.To illustrate the utility of such a package, suppose that simulation is used to com-pare two similar systems using common random numbers, with n simulation runs foreach system. To ensure proper synchronization, one would typically assign di�erentgenerators to di�erent streams of random numbers required by the simulation (e.g., in54



a queueing network, one stream for the interarrival times, one stream for the servicetimes at each node, one stream for routing decisions, etc.), and make sure that for eachrun, each generator starts at the same seed and produces the same sequence of numbersfor the two systems. Without appropriate tools, this may require tricky programming,because the two systems do not necessarily use the same number of random numbers ina given run. But with the package in [76], one can simply assign each run to a segmentnumber. With the �rst system, use the initial seed for the �rst run, and before each newrun, advance each generator to the beginning of the next segment. After the nth run,reset the generators to their initial seeds and do the same for the second system.The number and length of segments in the package of [76] are now deemed too smallfor current and future needs. A similar package based on a combined LCG with periodlength near 2121 in given in [72], and other systems of this type, based on generators withmuch larger periods, are under development. In some of those packages, generators canbe seen as objects that can be created by the user as needed, in practically unlimitednumber.When a generator's sequence is cut into subsequences spaced, say, � values apartas we just described, to provide for multiple generators running in parallel, one mustanalyze and test the vectors of nonsuccessive output values (with lacunary indices; seeSection 4.3.5) spaced � values apart. For LCGs and MRGs, for example, the latticestructure can be analyzed with such lacunary indices. See [38, 77] for more details andnumerical examples.4.6.3 Generators for Parallel ComputersAnother situation where multiple random number generators are needed is for simula-tion on parallel processors. The same approach can be taken: Partition the sequenceof a single random number generator with very long period into disjoint subsequencesand use a di�erent subsequence on each processor. So the same packages that providemultiple generators for sequential computers can be used to provide generators for par-allel processors. Other approaches, such as using completely di�erent generators on the55
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