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Abstract-In the given method, we suggest an improvement to the iteration of Newton’s method. 
Derivation of Newton’s method involves an indefinite integral of the derivative of the function, and the 
relevant area is approximated by a rectangle. In the proposed scheme, we approximate this indefinite 
integral by a trapezoid instead of a rectangle, thereby reducing the error in the approximation. It 
is shown that the order of convergence of the new method is three, and computed results support 
this theory. Even though we have shown that the order of convergence is three, in several cases, 
computational order of convergence is even higher. For most of the functions we tested, the order of 
convergence in Newton’s method was less than two and for our method, it was always close to three. 
@ 2000 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Newton’s method that approximates the root of a nonlinear equation in one variable using the 
value of the function and its derivative, in an iterative fashion, is probably the best known and 
most widely used algorithm, and it converges to the root quadratically. In other words, after 
some iterations, the process doubles the number of correct decimal places or significant digits at 
each iteration. 

In this study, we suggest an improvement to the iteration of Newton’s method at the expense 
of one additional first derivative evaluation. Derivation of Newton’s method involves an indefinite 
integral of the derivative of the function, and the relevant area is approximated by a rectangle. 
Here, we approximate this indefinite integral by a trapezoid instead of a rectangle, and the result 
is a method with third-order convergence. 

It is shown that the suggested method converges to the root, and the order of convergence is at 
least three in a neighbourhood of the root, whenever the first and higher order derivatives of the 
function exist in a neighbourhood of the root; i.e., our method approximately triples the number 
of significant digits after some iterations. Computed results overwhelmingly support this theory, 
and the computational order of convergence is even more than three for certain functions. 
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2. PRELIMINARY RESULTS 

DEFINITION 2.1. (See [I].) Letcu E !R, z, E 92, n = O,l, 2, . . . . Then, the sequence {TC,} issaid 
to converge to Q if 

lim 15, - Q) = 0. n-CC 

If, in addition, there exists a constant c 2 0, an integer no > 0, and p > 0 such that for all 
n > no, 

/&I+1 - aI 5 C/h - QIP, (2.1) 

then (1~~) is said to converge to QI with q-order at least p. If p = 2 or 3, the convergence is said 
to be q-quadratic or q-cubic, respectively. 

When e, = X, - (Y is the error in the nth iterate, the relation 

en+1 = ce”, + 0 (eE+l) (2.2) 

is called the error equation. By substituting e, = zn - a: for all n in any iterative method and 
simplifying, we obtain the error equation for that method. The value of p thus obtained is called 
the order of this method. 

DEFINITION 2.2. Let a: be a root of the function f(z) and suppose that x,+1, zn, and z,_l are 
three consecutive iterations closer to the root a. Then, the computational order of convergence p 
can be approximated using the formula 

ln I(G+I - Q) / (2, - a)I 
‘= ln((z, -(2.)/(&-1-Q)I’ 

STOPPING CRITERIA. We have to accept an approximate solution rather than the exact root, 
depending on the precision (E) of the computer. So, we use the following stopping criteria for 
computer programs: 

(i) Ix,+1 - z,l < V% 
(ii) If(xn+l)l < & 

3. NUMERICAL SCHEMES 

3.1. Newton’s Method (NM) 

Newton’s algorithm to approximate the root (Y of the nonlinear equation f(z) = 0 is to start 
with an initial approximation 22; sufficiently close to cy and to use the one point iteration scheme 

* 
2?2+1 = 2, 

f (xi3 -- 
* f’(G)’ 

(3.1) 

where xc is the nth . iterate. It is well known that Newton’s method as given above is quadratically 
convergent. 

It is important to understand how Newton’s method is constructed. At each iterative step we 
construct a local linear model of our function f(z) at the point CC: and solve for the root (x;+~) 
of the local model. In Newton’s method (Figure l), this local linear model is the tangent drawn 
to the function f(z) at the current point XL. 

The local linear model at XL is 

A&(x) = f (g&l + f’ (G) b - x3. (3.2) 
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Figure 1. Newton’s kerative step. 

Figure 2. Approximating the area by tlw rectangle fU?CU 
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Figure 3. Approximating the ares by the tmpezoiti A RED 
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This local linear model can be interpreted [l] in another way. From Newton’s theorem, 

f(x) = f (4 + .I‘Z f’(x) dX. 
xf 

(3.3) 

In Newton’s method, the indefinite integral involved in (3.3) is approximated by the rectangle 
ABCD (Figure 2), i.e., 

s 
Z f’(x) dA M f’ (xi) (x - cc;) , (3.4) 

c 

which will result in the model given in (3.2). 

3..2. A Variant of Newton’s Method (VNM) 

From Newton’s theorem, 

f(x) = f (4 + 1X f’(x) dX. 
Z,, 

(3.5) 

In the proposed scheme, we approximate the indefinite integral involved in (3.5) by the trapez- 
ium ABED (Figure 3), i.e., 

s 
’ f’(x) dX M 

0 
f (x - 4 LY(%) + f’(41. (3.6) 

2% 

Thus, the local model equivalent to (3.2) is 

j&&r) = f(G) + 
0 

; (x - z,)[f’(z,) + f’(z)]. (3.7) 

Note that not only the model and the derivative of the model agree with the function f(x) and 
the derivative of the function f’(z), respectively, but also the second derivative of the model and 
the second derivative of the function agree at the current iterate z = 5,. Even though the model 
for Newton’s method matches with the values of the slope f/(x,) of the function, it does not 
match with its curvature in terms of f”(z,). 

We take the next iterative point as the root of the local model (3.7) 

tin(zn+l) = 0, i.e., 

- &L) [f’(%) + f’(%+1)1 = 0 

=+X ?f (XT4 
n+l = Icn - [f’(x,) + f’(x,+1)]. 

Obviously, this is an implicit scheme, which requires having the derivative of the function at the 
(n + l)th iterative step to calculate the (n + l)th iterate itself. We could overcome this difficulty 
by making use of Newton’s iterative step to compute the (n + 1) th iterate on the right-hand side. 

Thus, the resulting new scheme is 

4. ANALYSIS OF CONVERGENCE 

THEOREM 4.1. Let f : D -+ % for an open interval D. Assume that f has first, second, and 
third derivatives in the interval D. If f(x) h as a simple root at a E D and x0 is sufficiently close 
to o, then the new method defined by (3.8) satisfies the following error equation: 

e,+l= (C:+iC3)ei,+O(et), (4.1) 

where e, = x, - Q and C, = (l/j!)f(j)(a)/f(l)(a), j = 1,2,3,. . . . 
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PROOF. The suggested variant of Newton’s method (VNM) is 

2.f (xn) 
x,+1 = xn - 

f’(G) + f’ (G&+1) ’ 
11 =ot1.2,..., 

where cr:,+r = Ic, - f(x,)/f’(~). L t b e ck e a simple root of f(z) (i.e., f(Q) = 0 and f/((U) # 0) 
and 2,, = QI + e,. We use the following Taylor expansions: 

where C, = (l/j!)f(“)(~)/f(‘)(~). Furthermore, we have 

f(l)(~~) = f(l)(a + e,) = f(l)(a) + fc2)(Cy)en + ~f(“)I~)ei + 0 (4) 

fc2)(a)en 1 f(“)(a)e2 
= f’%) [l + pya) + 5 f’l’(a)’ + O (4 

1 

= f(l)(a) [l + 2&e, + 3&e; + 0 (et)] . 

(4.3) 

Dividing (4.2) by (4.3), 

f (xn) 
-zz 

f (‘)(xcn) 
[e, + C2ei + C3ei + 0 (e:)] [1+ 2&e, + 3&e; + 0 (ei)]-’ 

= [e, + C2ez + C3e: + 0 (et)] 

x 
{ [ 

1 - 2C2e, + 3Cset + 0 (ez)] + [2C Je7, + 3Caei + 0 (ex)]” - .) 

= [e,+C2ei+Cae”, + 0 (et)] {l- [2Cze,+3C:~e~L+0 (e$] +4CieFL + ...} (4.4) 

= [e, + C2ei + Csei + 0 (ei)] [l - 2&e,, + (4Ci - 3Ca) ei + 0 (efL)] 

= e, - 2C2ez + (4C,2 - 3C3) ei + C2eFL - 2Cze3, + Csei + 0 (e:‘,) 

= e, - C2ei + (2C,2 - 2Cs) e: + 0 (e:) , 

“f(xn) .x,:+1 = 5, - ~ 
f(l)(xn) 

=a+e, - [e, - C2ei + (2Cz - 2C3) ei + 0 (e:‘,)] , (by (4.4)) 

= N + Czei + (2Cs - 2C,2) e? + 0 (e?J] . 

Again by (4.5) and the Taylor’s expansion, 

f(l) (xi+1 ) = f(l)(cr) + [C2ei + (2C3 - 2Cz) e”, + 0 (e$)] Y2’(Q) + 0 (G) 

= f(l)(~) { 1-t [2C2ei + 4 (Ca - Cz) ei + 0 (ei)] [ ~~~~/~)]} 

(4.5) 

(,1.6) 

= f(l)(a) [l + 2Czei + 4C2 (Ca - C.$ ei + 0 (ei)] 

Adding (4.3) and (4.6), 
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(4.7) f’l’(ICn) + f(l) ($+I) = 2f’l’(cY) 1 + c [ 2en+ (C~++)e~+O(e~)]. 

From equations (4.2) and (4.7), 

2.f (3%) 
[f(l)(x,)+f(l) (x;+l)] = [e,+C& + c3e3, + 0 (c+l 

x [I+G,e,,+ (C~++3)e2+0(e~)]-1 

= [e,+Czei + Csei+O (et)]’ { [ 2en+ (Ci+iC3)i$+O(et)] 1 - C 

= [e, + C2ei + C3ei + 0 ($)I [l - C2e, - %C3ei + 0 (ei) 

=en - C2ez - +ei + C2ei - Czei + C3ei + 0 (e:) 

=e,- (C$++)e3+0(e:). 

(4.8) 

(1) 

(2) 

Table 1 

Function x0 i cot NOFE Root 

f(x) NM VNM NM VNM NM VNM 

x3 + 4x2 - 10 -0.5 109 6 1.98 2.96 218 18 1.36523001341448 

1 5 3 1.98 ND 10 9 -Do- 

2 5 3 1.99 ND 10 9 -DO- 

-0.3 113 6 1.99 3.05 226 18 -Do- 

sin2(x) - x2 + 1 1.40449164821621 

NM - Newton’s method 

VNM - Variant of Newton’s method 

ND - Not defined 

COC - Computational order of convergence 

NOFE - Number of function evaluations 

i - Number of iterations to approximate the root to 15 decimal places 
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‘l’hus, 

( 1.9) 

E(luatiou (4.9) establishes the third-order convergeme of the VNiU. I 

5. CONCLUSIONS 

We have shown that VNM is at least third-order convergent provided the fimt, swo~~rl. ;~utl 
third derivatives of the function exist. Computed results (Table 1) ovc~r~vllelnliiigl~ support tlie 
third-order convergence, and for some functions the Computational Order of Convergcnw (COC’) 
is (YWI more than three. The most important characteristic of the, VN51 is t,llat unlike a11 ot,lwr 
third-order or higher order methods, it is not required to comlmte seco~l or higllt~r clwivatiws 
of tlit, function to carry out iterat,ions. 

Apparently. the VNM needs one more function evaluation ut each iteration, IY~WII ~m11mwl 
to Newton’s method. However, it is evident 1)~ the computed rrsult,s (Table 1) that tlw t,otal 
numtwr of function evaluations required is less tlmn that of Ntwton’s met,hod. 


