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Introduction

Submanifolds with parallel second fundamental form are defined as an extrinsic
analogue of locally symmetric manifolds. From the classification of submanifolds
with parallel second fundamental form in a Euclidean space by D. Ferus in
[F] it follows that all of them are locally invariant under the reflection in the
normal space of an arbitrary point. This property was proved directly later
on by W. Striibing in [S] without using the classification of Ferus. As a conse-
quence, submanifolds with parallel second fundamental form, also called parallel
submanifolds, of a Euclidean space are locally symmetric. This follows of course
also immediately from the equation of Gauss.

It was proved by K. Nomizu that V*R=0 implies VR=0 for Riemannian
manifolds (for the global version that requires completeness, see [N —O]). One
could ask whether this is also the case for the higher derivatives of the second
fundamental form, which we call the higher fundamental forms. At this moment,
not very much is known about submanifolds for which some higher order funda-
mental form is parallel, or say higher order parallel submanifolds. In [L], U.
Lumiste studies flat submanifolds of a Euclidean space with flat normal connec-
tion and parallel third fundamental form. As an example he mentions the Cornu
spiral, which is a plane curve whose curvature is proportional to the arc length.
This example also shows that P*h=0 does not imply Vh=0, since F>h=0
for the Cornu spiral, but ¥ k4 0. In [L],, the same author classifies two-codimen-
sional submanifolds and surfaces of a Euclidean space with parallel third funda-
mental form. As a consequence, one can give a classification of hypersurfaces
of a Euclidean space that satisfy F2h=0.

In this paper we classify hypersurfaces M" of the (n+ 1)-dimensional Euclide-
an space R"*! with parallel higher order fundamental form, ie. that satisfy
V¥h=0 for some k, where h is the second fundamental form of M". In particular
we show the following theorem:

Theorem. Let M" be a hypersurface of R"** such that V*h=0 for some k. Then
M" is an open part of one of the following hypersurfaces:
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(1) an affine hyperplane R",

(2) a hypersphere S",

(3) a product of an affine subspace R"~™ and a sphere S™ in a (m+ 1)-dimension-
al affine subspace R™* !, orthogonal to R"*™",

(4) a cylinder on a plane curve whose curvature function is a polynomial function
of degree at most k—1 of the arc length.

Examples (1), (2) and (3) are parallel, thus satisfying V' h=0, but Example (4)
is only parallel if the curve on which the cylinder is built, is either a circle
or a straight line, ie. a curve whose curvature is a polynomial function of
degree zero of the arc length.

We call plane curves whose curvature is a polynomial function of the arc
length “polynomial spirals”. In the last section of this paper we show some
pictures of this kind of curves.

§ 1. Preliminaries

Let M" be an immersed hypersurface of the Euclidean space R"*!. We denote
the Euclidean metric on R"*! by { , > and the Levi Civita connection of { , >
by D. The induced metric on M" is also denoted by { , > and the Levi Civita
connection of (M", { , >) by V. Then we have the formulas of Gauss and
Weingarten.

Dy Y=WVY+h(X,Y)¢

Dy ¢=-S5X,

whereby X and Y are tangent vector fields, ¢ is a unit normal vector field
and h and S denote respectively the second fundamental form and the shape
operator of M". Then h and S are related by

(SX,Y>=h(X, Y).

Since h is symmetric it follows that S is symmetric, and therefore there exists
an orthonormal basis {e, e,, ..., e,} of T, M for every pe M" consisting of eigen-
vectors of S, i.e. Se;=4;¢;. The numbers 4,,4,, ..., 4, are called the principal
curvatures of M" at p. If a basis {e,, e,, ..., e,} occurs in the following, it will
always mean a basis of eigenvectors of S. Then the equation of Gauss states
that

R(ei,EJ)——-:Ailjei/\ej, (1.1)

whereby A associates to two vectors X, YeT, M an endomorphism X AY of
T, M by

(XAY)Z=(Y,ZYX —(X,Z) Y.

According to Lemma 2.1 in [R] there exist continuous functions 4;,4,, ..., 4,

on M", such that for every pe M" A, (p), A,(p), ..., /n(p) are the eigenvalues of S.
M" is called totally geodesic if h=0. It is well known that M" is totally

geodesic if and only if M" is an open part of a hyperplane. M” is called totally
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umbilical if A, =4,=...=4,=4. It is well known that M" is totally umbilical

if and only if M" is totally geodesic (4 =0), or M" is an open part of a hypersphere

(A4%0). M" is called cylindrical if rank S<1 in each point. M" is cylindrical

if and only if M" is flat. The famous Hartman-Nirenberg theorem [H—N]

states that a complete cylindrical hypersurface is a cylinder over a plane curve.
The k-th derivative F*h of h is defined recursively by

(th)(XlsXZa ---an+2)=X1(Vk_lh)(X2s ""Xk+2)
k+2
- Z (Vk_lh)(XZ’ crey VX1 Xi’ ""Xk+2)'

i=2

We call F*h the (k+2)-nd fundamental form. The Ricci identity states for k22
that

(th)(XlaXZs ""Xk+2)_(th)(X2aXls ---an+2)
=(R(X1,X2)~(l7""2h))(X3,...,Xk+2), (1.2)

whereby X, X5, ..., Xy1,€X (M"), and R(Xy, X,)-(V*~2h) is defined by

(R(Xl’XZ)'(Vk_zh))(X3a "'st+2)
k+2
==Y (M h(Xs,...,R(X{, X)) X;, ..., Xiy2) (1.3)

i=3
For k=1 the equation of Codazzi states that
Vh (X, Y, Z)=(V h)(Y, X, Z), (1.4)
or equivalently

(" ) (X)=(Vx S)(Y).

If Vh=0, then M" is called parallel, or in some papers “symmetric” or
“extrinsic locally symmetric”. If M" is parallel then M" is an open part of
a hypersphere, or an open part of a hyperplane, or an open part of a product
of an affine subspace R"* and a sphere S* in a (k+ 1)-dimensional affine sub-
space R**!, orthogonal to R"7¥, see [S—W]. For a classification of parallel
submanifolds M™ of R"*?, which can be defined in a similar way, see [F].

If R-h=0, i.e. R(X, Y)-h=0 for all X and Y, then we call M" semi-parallel
[D]. If M" is parallel, then M" is also semi-parallel. The semi-parallel hypersur-
faces of R~ ! are classified in [D]. If M" is semi-parallel, then M" is an open
part of a hypersphere, or an open part of a hyperplane, or an open part of
an elliptic hypercone, or an open part of a product of an affine subspace R"~*
and a sphere S* or an elliptic hypercone ¢* in a (k+ 1)-dimensional affine sub-
space R¥*1, orthogonal to R" %, or else M" is cylindrical.
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Similar to (1.3) we define an operator R- that acts on a t-covariant tensor
field by

(R-T)(X,, Y1,2,,2Z,, “-’Zt)=(R(X1’ Y)-T)(Z,,2,, VA
= —'T(R(Xl’ YI)ZI’223 -"azt)— vee _T(ZI’ZZ’ ""R(Xla Yl)zt)

Then R-T is a (t+2)-covariant tensor field. We also define recursively RE.T
by
(Rk'T)(Xla Yl, '"9Xk, Y;CSZIYZZ’ -'-,Zt)=(R(X1v Yl)
N (Rk_l‘T))(Xz, Yz, ...,Xk, ),I(’ZISZZ5 ceny Zt)'

Then R*- T'is a (t + 2k)-covariant tensor field.

§ 2. Reduction of the Condition

We now try to reduce the condition P*h=0 to conditions that are more easy
to handle. The following lemmas do the trick.
k+1

Lemma 2.1. If V*h=0, then R[T -h=0.

Proof. If V2*h=0 then it follows from (1.2) that R-(V**~2h)=0. From this is
follows again from (1.2) that R-(R-(V2*~*h))=0. Proceeding like this we obtain
that R¥-h=0.

If P2%*1p=0 then V***2h=0. Then it follows like above that R**'-h
=0. O
Lemma 2.2, (a.) (RZh'h) (ei, €;, €, e,-, R e,-)=(— l)k 22k_1},i2k Afk(l,“)u] y

(b) (R**-h) (e e, €58 ..., €, ej)=(_1)k+1 221 pFk }V}k(li-ﬂ'j),

(©)(R?*-h) (e;, ¢;, €1, ;5 ..., €, €) =0,

(d) (R2k+l h) (ei: ejs €, ej, cees €4y ej)=(—' 1)k+ 1221‘/'['1'2"4-1 A_);k+l(j'i—'{j),

©(R?**1.h) (e;, e), €, €}, ..., €;,€) =0,

® (R2k+1’h) (e, €;,€i,€j,...,€j, ej)=0-

Proof. The proof goes by induction. First let k=0, then by (1.1) we obtain

(R(e;, ej)'h) (e, e))= —h(R(e;, e) e, ej)—'h(ei’ R(e;, ) e;)
=h(4 A'j €;, ej)_h(ei’ Ai lj €)= )*j(j'j—’li):
(R(e:s ej)'h) (e, €)= —2h(R(e;, €) €;, e)=2h(4;4;e;, e)=0,

and similarly
(Re;, ej) -h) (ej, ej) =0.

The formulas (a), (b) and (c) make no sense here if k=0. Now suppose the
lemma is true for k— 1. Then

(Rzk'h)(E;, €, €;,€jy ..., € ei)
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= —(Rzk_l h) (R(ei’ ej) €, eja € ej: -3 € ei)
_(RZk—l'h)(eiaR(eb ej) €j; €, €, '-"eiael’)
T e _2(R2k_1‘h)(eiaejs €, ej’ -"’R(eiaej) €, ei)
=(R2k_1'h)(/1i ljeja ej’ €i, ej: cees €y ei)
—(RZkbl'h)(eislijfjei’ei, €j, “"ei’ei)
e +2(R2k—1‘h)(e,~, €j, €, ej, ...,/liljej,ei)
=/ lj(R(ej,ej)'(RZk_Z‘h)) (eis ), ..., €;,€)
_)‘i )“j(R(eis ei)'(RZk_z'h» (ei9 €js .5 € el’)
— . +2A, lj(Rzk—l 'h)(ei, ej, e;, ej, ...,ej, e,-)
=22, ;[ (— 1)k 22E~D 2k 1 26713, —2)],
— (= 1)F 22571 2% 2K, — 1),
Hence (a) is true for k. Similarly (b) and (c) are true for k. We show that (d)
is true, then (€) and (f) can be proved similarly.

(R***1-h)(e;, ej, €15 €5, ..., €5, €))
=—(R**-h)(R(e;,ej) e;, ), €, €j, ..., €;, )
—(R?**.h)(e;, R(es, e)) ej, €5, €j, ..., €1, €5)
—...—(R**-h)(e;, e, €, €), ..., R(e;, ¢)) €;, ¢))
—(R**-h)(e;, ¢j, €, €j, ..., €, R(e;, €)) ¢))
=4 A [(R*-h) (e;, €), €, ¢;, ..., €, €)—(R**-h) (e;, ), €5, ;5 .., €5, €)) ]
=1 AL D 22 A G- Ay
—(— 1} 2T A )
=(_1)k+1 22kli2k+1,1]gk+l(ii_lj). D
Plroposition 2.1. For a hypersurface M" of R"* ! the following conditions are equiv-
alent:
1) R*-h=0,
EZ; R-h=0,ie. M" is semi-parallel,
(3) at each point pe M" the shape operator has the following form

j’-
-
S,= 0
"o

Proof. If (1) holds then it follows from Lemma 2.2 that A; 4;(4;—4;))=0. From
[D] we obtain that in this case R-h=0. Hence (2) holds. Conversely, if (2)
holds, then automatically (1) holds. In other words, (1) holds if and only if
A;Aj(2;—2;)=0. From this observation follows immediately that (1) and (3) are
equivalent. [J

In order to prove our theorem, we look at the classification of all semi-
parallel hypersurfaces and select out those hypersurfaces which satisfy V¥h=0.
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§ 3. Proof of the Theorem

So let M™ be a hypersurface of R"*! that satisfies P*h=0. From Lemma 2.1
and Proposition 2.1 we obtain that M" is semi-parallel. From the classification
of semi-parallel hypersurfaces then follows that there are three cases: (Case 1)
M" is an open part of a parallel hypersurface, ie. a hyperplane, a hypersphere
or a product of an affine subspace and a sphere, (Case 2) M" is an open part
of an elliptic hypercone or of the product of an elliptic cone and an affine
subspace, (Case 3) M" is flat.

Case 1. This case is trivial.

Case 2. Here it’s sufficient to show that an elliptic hypercone cannot be higher
order parallel. So consider the elliptic hypercone €” = {(xo, X1, ... X,)€R" 1 x>0
and (tg26) x2 =x2+ ... 4+ x2}, where 0 is a nonzero constant. From [D] it follows
that %" is semi-parallel and has as principal curvature functions 0 and

cos?6 1

sinf xo (3-)

Note @" is foliated by straight lines with parameterization y(t)=(t,a; t, ..., d, t)
where (tg20)=a’+ ... +a2. We consider such a line. Let X, be a parallel unit
vector field along y that is tangent to ¢” and orthogonal to y'. If we denote
the restriction of A to the line y also by A, then h(X,, X,)=A(t), W h) (v (t), X, X,)
= A'(t), and one easily sees that

(PR (¢ (@), .5 ¥ () X, X)=2P(2).
Thus 4 is a polynomial function of degree at most k—1 of ¢. But this contradicts
(3.1).

Case 3. Since M" is flat, there exists around each point of M" an open neighbour-
hood U such that U is isometric to an open part of R”. Let (uy,...,u,) be

Euclidean coordinates on U and define functions F;; on U by F;= h(i 4 )

ou;’ du;)
.. . OF; Lo
From the equation of Codazzi it follows that gi’ = a;’ , such that there exists
2 k i

. But then it follows again from the fact

a function f satisfying F;;= T
i Y%

that M" satisfies P*h=0 that all partial (k+2)-nd derivatives of f are zero, such
that f is a polynomial function of degree at most k+ 1. Hence f can be defined

o 0

on the whole of R". Defining a symmetric 2-form h on R" by h(5u~’ W)
i J
2f

" ou; 0w,
be immersed isometrically into R**! with h as second fundamental form and
that this immersion coincides on U with our original immersion. From the

, it follows from the fundamental theorem of hypersurfaces that R" can
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Fig. 1. k=s

Fig. 2. k=52

Fig. 3. k=s—2.19

Hartman-Nirenberg cylinder theorem it then follows that U is an open part
of a cylinder € over a plane curve y.

We can suppose that y has unit speed. After a rigid motion of R"*?, we
can suppose that €" has the following parameterization x:

x(t9u1’ --"un—l)z(Y(t)’ ul, -",un—l)’

where y(t)=(y,(¢),72(¢)). Let {T(t), N(t)} be the oriented Frenet frame along
y and let x be the curvature of y. Then an orthonormal basis of the tangent
space is given by {x,,X,,,...,X,,_,}, whereby x,=(T(t),0,...,0) and x,,
=(0,0,...,1,0,...,0), where 1 occurs at the (j+ 2)-nd place. A unit normal vector
field ¢ is given by {=N(t). Now we obtain that V, x,=0, V, x,,= qu, x,=0
and qu, x,,,=0; and also that h(x,, x,) =x(t), h(x., x,)=h(x,,, x,,)=0. From these
formulas, it follows that (V h) (x,, x,, x,)=k«'(t), and all the other first derivatives
of h are zero. Now one shows easily by induction that

(V"h) (xn xta ey xt)= K(k)(t)$
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Fig. 4. x=s>—4

Fig.5. k=5+1

Fig. 6. k=55*—185*+5

and all the other k-th derivatives are zero. This shows that F*h=0 if and only
if the curvature function is a polynomial function of degree k—1 of the arc

length.

Since all the hypersurfaces occurring in this local classification are analytic,
they can only be pasted together if they are of the same type. This observation
finishes the proof of the theorem.

§4. ~Polynomial Spirals

We call a plane curve a polynomial spiral if its curvature function is a polynomial
function of the arc length. If s goes to infinity, the curvature function of course
also goes to infinity, and therefore the curve spirals towards some point at
its ends. Since the curvature function determines the curve up to an isometry,
it is clear that every spiral y can be written as

v(s)=(f cos(B (O, | sin(a(t»). @1
0 0
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Then the curvature x,(s)=F/(s) is a polynomial of degree k—1 of s. Thus a
cylinder built on y satisfies F*h=0.

If k=0, then 7y, defined by (4.1) is a straight line, thus a cylinder on 7 is
a hyperplane, which is totally geodesic, i.e. satisfying h=0.

If k=1, then 7, defined (4.1) is a circle, thus a cylinder on y is a circular
cylinder, which is parallel, i.e. satisfying V h=0.

If k=2, by measuring the arc length of y eventually from another point,
we obtain that the curvature is proportional to the arc length. All this curves
are the same up to similarity transformations of the plane. Such a curve is
sometimes called clothoid or more frequently the Cornu spiral, after A. Cornu
who used this curve in 1874 in his study of diffraction. The Cornu spiral was
probably studied first by Jacobi Bernoulli around 1696. It is described in his
work OPERA, Tomus Secundus, pp. 1084-1086 [B].

Figure 1 shows how the Cornu spiral looks like. Notice that the Cornu
spiral has a point of inflection at s=0. It doesn’t have self intersections.

If k=3, then there are infinitely many non similar curves. By a similarity
transformation and by changing the point from which we measure the arc length,
we can make sure that the curvature satisfies x =s?>— D, where DelR. Figures 2,
3, 4 and 5 show how this curve looks like for D=0, D=2.19, D=4 and D= —1.
Notice that y has two points of inflection if D>0, one if D=0 and none if
D <0. Moreover, y has no self intersections if [D] is small.

If k> 3, then the spirals become more and more intricate, although the gener-
al pattern remains: the curve spirals asymptotically to two points, which can
coincide for some polynomials. Figure 6 gives an example of the case k=4.
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