In dieser Galerie sind für diverse TPMS (s. rechts) folgende Objekte dargestellt:
(s. dazu auch TPMS – Grundlagen) und ggf. weitere Grafiken.
Die TPMS wurde mit dem Graphing Calculator 3D, die anderen Objekte wurden mit MSLattice erzeugt, wobei dessen Feature, eigene Funktionen definieren zu können, verwendet wurde.
Anstatt zu scrollen kann man durch Anklicken eines TPMS-Namens in den Spalten oben rechts direkt zur gewünschten TPMS (oder auch direkt in die Galerie 1 oder Galerie 3) springen.
Für eigene Experimente findet die interessierte Leserschaft am Ende der Seite die TPMS-Funktionen in gewohnter Syntax und spezieller MSLattice-Syntax für Copy & Paste.
−2 (CxCy + CyCz + CxCz) − 2(C2x + C2y + C2z) + (C2xCy + C2yCz + CxC2z) − (CxC2y + CyC2z + C2xCz) = t
Slotted-P - Sheet
Slotted-P - Solid A
Slotted-P - Solid B
1.1 (S2xCySz + S2yCzSx +
S2zCxSy) − 0.2 (C2xC2y + C2yC2z + C2zC2x) −
0.4 (C2x + C2y +C2z) = t
Split-P - Sheet
Split-P - Solid A
Split-P - Solid B
(Cx – 2 Cy) Cz − √3 Sz (Cx−y − Cx) + Cx−yCz = t
Q* - Sheet
Q* - Solid A
Q* - Solid B
(C2xCy + C2yCz +CxC2z) − (CxC2y + CyC2z + C2xCz) = t
W - Sheet
W - Solid A
W - Solid B
Cx Cy Cz = t
F - Isosurface
F - Sheet
F - Solid A
F - Solid B
(S2xS2y + S2yS2z +S2zS2x) + C2xC2yC2z = t
Double D - Sheet
Double D - Solid A
Double D - Solid B
Variante: C2xC2y + C2yC2z + C2xC2z + S2xS2yS2z = t
Double D2 - Sheet
Double D2 - Solid A
Double D2 - Solid B
2.75 (S2xCySz + S2yCxSz + S2zSyCx) − (C2xC2y + C2yC2z + C2zC2x) = t
Double G - Sheet
Double G - Solid A
Double G - Solid B
½ (CxCy + CyCz + CzCx) + 0.2 (C2x + C2y + C2z) = t
Double P - Sheet
Double P - Solid A
Double P - Solid B
10(S{x}S{y}S{z} + S{x}C{y}C{z} + C{x}S{y}C{z} + C{x}C{y}S{z}) − 0.7(C4x +C4y +C4z) – 11 = t
mit {x} = x − π/4, {y} = y − π/4, {z} = z − π/4
Tubular D - Sheet
Tubular D -Sheet, -1 ≤ z ≤ 1
10 (CxSy + CySz + CzSx) − 0.5 (C2xC2y + C2yC2z + C2zC2x) – 14 = t
Tubular G - Sheet
Tubular G - Sheet, -1 ≤ z ≤ 1
10 (Cx + Cy + Cz) − 5.1 (CxCy + CyCz + CzCx) − 14.6 = 0
Tubular P - Sheet
Tubular P - Sheet, -1 ≤ z ≤ 1
TPMS | ϕTPMS | F(x,y,z) für MSLattice | p | c |
Slotted-P |
−2(cos(px)cos(py)+cos(py)cos(pz)+cos(px)cos(pz))−2(cos(2px)+cos(2py)+ cos(2pz))+(cos(2px)cos(py)+cos(2py)cos(pz)+cos(px)cos(2pz))− (cos(px)cos(2py)+cos(py)cos(2pz)+cos(2px)cos(pz))=t
-2.*(cos(2.*pi.*x).*cos(2.*pi.*y)+cos(2.*pi.*y).*cos(2.*pi.*z)+cos(2.*pi.*x).*cos(2.*pi.*z))- 2.*(cos(2.*2.*pi.*x)+cos(2.*2.*pi.*y)+cos(2.*2.*pi.*z))+(cos(2.*2.*pi.*x).*cos(2.*pi.*y)+ cos(2.*2.*pi.*y).*cos(2.*pi.*z)+cos(2.*pi.*x).*cos(2.*2.*pi.*z))-(cos(2.*pi.*x).*cos(2.*2.*pi.*y)+ cos(2.*pi.*y).*cos(2.*2.*pi.*z)+cos(2.*2.*pi.*x).*cos(2.*pi.*z)) |
2π | 0.75 |
Split-P |
1.1(sin(2px)cos(py)sin(pz)+sin(2py)cos(pz)sin(px)+sin(2pz)cos(px)sin(py))− 0.2(cos(2px)cos(2py)+cos(2py)cos(2pz)+cos(2pz)cos(2px))−0.4(cos(2px)+ cos(2py)+cos(2pz))=t
1.1.*(sin(2.*2.*pi.*x).*cos(2.*pi.*y).*sin(2.*pi.*z)+ sin(2.*2.*pi.*y).*cos(2.*pi.*z).*sin(2.*pi.*x)+sin(2.*2.*pi.*z).*cos(2.*pi.*x).*sin(2.*pi.*y))- 0.2.*(cos(2.*2.*pi.*x).*cos(2.*2.*pi.*y)+cos(2.*2.*pi.*y).*cos(2.*2.*pi.*z)+ cos(2.*2.*pi.*z).*cos(2.*2.*pi.*x))-0.4.*(cos(2.*2.*pi.*x)+cos(2.*2.*pi.*y)+ cos(2.*2.*pi.*z)) |
2π | 0.25 |
Q* |
(cos(px)-2cos(py))cos(pz)-sqrt(3)sin(pz)(cos(px-py)-cos(px))+cos(px-py)cos(pz)=t
(cos(2.*pi.*x)-2.*cos(2.*pi.*y)).*cos(2.*pi.*z)-sqrt(3).*sin(2.*pi.*z).*(cos(2.*pi.*(x-y))-cos(2.*pi.*x))+cos(2.*pi.*(x-y)).*cos(2.*pi.*z) |
2π | 0.25 |
W |
(cos(2px)cos(py)+cos(2py)cos(pz)+cos(px)cos(2pz))-(cos(px)cos(2py)+cos(py)cos(2pz)+cos(2px)cos(pz))=t
(cos(2.*2.*pi.*x).*cos(2.*pi.*y)+cos(2.*2.*pi.*y).*cos(2.*pi.*z)+ cos(2.*pi.*x).*cos(2.*2.*pi.*z))-(cos(2.*pi.*x).*cos(2.*2.*pi.*y)+ cos(2.*pi.*y).*cos(2.*2.*pi.*z)+cos(2.*2.*pi.*x).*cos(2.*pi.*z)) |
2π | 0.1 |
F |
cos(px) cos(py) cos(pz) = 0
cos(2.*pi.*x).*cos(2.*pi.*y).*cos(2.*pi.*z) |
2π | 0.1 |
Double D |
(sin(2px)sin(2py)+sin(2py)sin(2pz)+sin(2pz)sin(2px))+cos(2px)cos(2py)cos(2pz)=t
(sin(2.*2.*pi.*x).*sin(2.*2.*pi.*y)+sin(2.*2.*pi.*y).*sin(2.*2.*pi.*z)+ sin(2.*2.*pi.*z).*sin(2.*2.*pi.*x))+cos(2.*2.*pi.*x).*cos(2.*2.*pi.*y).*cos(2.*2.*pi.*z)
Variante: cos(px)cos(py)+cos(py)cos(pz)+cos(px)cos(pz)+sin(2px)sin(2py)sin(2pz)=t
cos(2.*2.*pi.*x).*cos(2.*2.*pi.*y)+cos(2.*2.*pi.*y).*cos(2.*2.*pi.*z)+ cos(2.*2.*pi.*x).*cos(2.*2.*pi.*z)+sin(2.*2.*pi.*x).*sin(2.*2.*pi.*y).*sin(2.*2.*pi.*z) |
2π | 0.25 |
Double G |
2.75(sin(2px)cos(py)sin(pz)+sin(2py)cos(px)sin(pz)+sin(2pz)sin(py)cos(px))- (cos(2px)cos(2py)+cos(2py)cos(2pz)+cos(2pz)cos(2px))=t
2.75.*(sin(2.*2.*pi.*x).*cos(2.*pi.*y).*sin(2.*pi.*z)+ sin(2.*2.*pi.*y).*cos(2.*pi.*x).*sin(2.*pi.*z)+ sin(2.*2.*pi.*z).*sin(2.*pi.*y).*cos(2.*pi.*x))-(cos(2.*2.*pi.*x).*cos(2.*2.*pi.*y)+cos(2.*2.*pi.*y).*cos(2.*2.*pi.*z)+ cos(2.*2.*pi.*z).*cos(2.*2.*pi.*x)) |
2π | 0.25 |
Double P |
0.5(cos(px)cos(py)+cos(py)cos(pz)+cos(pz)cos(px))+0.2(cos(2px)+cos(2py)+cos(2pz))=t
0.5.*(cos(2.*pi.*x) .*cos(2.*pi.*y)+cos(2.*pi.*y) .*cos(2.*pi.*z)+ cos(2.*pi.*z) .*cos(2.*pi.*x))+0.2.*(cos(2.*2.*pi.*x)+cos(2.*2.*pi.*y)+cos(2.*2.*pi.*z)) |
2π | 0.1 |
Tubular D |
10(sin(x−π/4)sin(y−π/4)sin(z−π/4)+sin(x−π/4)cos(y−π/4)cos(z−π/4)+ cos(x−π/4)sin(y−π/4)cos(z−π/4)+cos(x−π/4)cos(y−π/4)sin(z−π/4))− 0.7(cos(4x)+cos(4y)+cos(4z))−11
10.*(sin(2.*pi.*x-pi/4).*sin(2.*pi.*y-pi/4).*sin(2.*pi.*z-pi/4)+ sin(2.*pi.*x-pi/4).*cos(2.*pi.*y-pi/4).*cos(2.*pi.*z-pi/4)+ cos(2.*pi.*x-pi/4).*sin(2.*pi.*y-pi/4).*cos(2.*pi.*z-pi/4)+ cos(2.*pi.*x-pi/4).*cos(2.*pi.*y-pi/4).*sin(2.*pi.*z-pi/4))- 0.7.*(cos(2.*pi.*4.*x)+cos(2.*pi.*4.*y)+cos(2.*pi.*4.*z))-11 |
2π | 0.15 |
Tubular G |
10(cos(px)sin(py)+cos(py)sin(pz)+cos(pz)sin(px))−0.5(cos(2px)cos(2py)+ cos(2py)cos(2pz)+cos(2pz)cos(2px))−14
10.*(cos(2.*pi.*x).*sin(2.*pi.*y)+cos(2.*pi.*y).*sin(2.*pi.*z)+ cos(2.*pi.*z).*sin(2.*pi.*x))-0.5.*(cos(2.*2.*pi.*x).*cos(2.*2.*pi.*y)+ cos(2.*2.*pi.*y).*cos(2.*2.*pi.*z)+cos(2.*2.*pi.*z).*cos(2.*2.*pi.*x))-14 |
2π | 0.15 |
Tubular P |
10(cos(px)+cos(py)+cos(pz))−5.1(cos(px)cos(py)+cos(py)cos(pz)+cos(pz)cos(px))−14.6
10.*(cos(2.*pi.*x)+cos(2.*pi.*y)+cos(2.*pi.*z))-5.1.*(cos(2.*pi.*x).*cos(2.*pi.*y)+ cos(2.*pi.*y).*cos(2.*pi.*z)+cos(2.*pi.*z).*cos(2.*pi.*x))-14.6 |
2π | 0.15 |