---------------- Direkt zur TPMS -----------------
In dieser Galerie finden Sie für diverse TPMS (s. rechts) Einheitszellen (engl. unit cells) der Objekte
für c = 0 und weitere Grafiken. Bezüglich der Nomenklatur und Erzeugung siehe TPMS – Einführung.
Für eigene Experimente enthält die Tabelle am Ende der Seite die TPMS-Funktionen in gewohnter Syntax und MSLattice-Syntax für ein schnelles Copy & Paste.
ϕ (x,y,z) = −2
(CxCy + CyCz + CxCz) − 2(C2x + C2y + C2z) + (C2xCy +
C2yCz + CxC2z) −
(CxC2y + CyC2z + C2xCz)
Slotted-P - TPMS
Slotted-P - Sheet
Slotted-P - Solid A
Slotted-P - Solid B
ϕ (x,y,z) = 1.1
(S2xCySz + S2yCzSx + S2zCxSy) − 0.2 (C2xC2y + C2yC2z
+ C2zC2x) −
0.4 (C2x + C2y +C2z)
Split-P - TPMS
Split-P - Sheet
Split-P - Solid A
Split-P - Solid B
ϕ (x,y,z) = (Cx – 2 Cy) Cz − √3 Sz (Cx−y − Cx) + Cx−yCz
Q* - TPMS
Q* - Sheet
Q* - Solid A
Q* - Solid B
ϕ (x,y,z) = (C2xCy + C2yCz +CxC2z) − (CxC2y + CyC2z + C2xCz)
W - TPMS
W - Sheet
W - Solid A
W - Solid B
ϕ (x,y,z) = Cx Cy Cz
F - TMPS
F - Sheet
F - Solid A
F - Solid B
ϕ (x,y,z) = (S2xS2y + S2yS2z +S2zS2x) + C2xC2yC2z
Double D - TPMS
Double D - Sheet
Double D - Solid A
Double D - Solid B
Variante: ϕ (x,y,z) = C2xC2y + C2yC2z + C2xC2z + S2xS2yS2z
Double D2 - TPMS
Double D2 - Sheet
Double D2 - Solid A
Double D2 - Solid B
TPMS | ϕTPMS | F(x,y,z) für MSLattice | p | d |
Slotted-P |
−2(cos(px)cos(py)+cos(py)cos(pz)+cos(px)cos(pz))−2(cos(2px)+cos(2py)+ cos(2pz))+(cos(2px)cos(py)+cos(2py)cos(pz)+cos(px)cos(2pz))− (cos(px)cos(2py)+cos(py)cos(2pz)+cos(2px)cos(pz))
-2.*(cos(2.*pi.*x).*cos(2.*pi.*y)+cos(2.*pi.*y).*cos(2.*pi.*z)+cos(2.*pi.*x).*cos(2.*pi.*z))- 2.*(cos(2.*2.*pi.*x)+cos(2.*2.*pi.*y)+cos(2.*2.*pi.*z))+(cos(2.*2.*pi.*x).*cos(2.*pi.*y)+ cos(2.*2.*pi.*y).*cos(2.*pi.*z)+cos(2.*pi.*x).*cos(2.*2.*pi.*z))-(cos(2.*pi.*x).*cos(2.*2.*pi.*y)+ cos(2.*pi.*y).*cos(2.*2.*pi.*z)+cos(2.*2.*pi.*x).*cos(2.*pi.*z)) |
2π | 0.75 |
Split-P |
1.1(sin(2px)cos(py)sin(pz)+sin(2py)cos(pz)sin(px)+sin(2pz)cos(px)sin(py))− 0.2(cos(2px)cos(2py)+cos(2py)cos(2pz)+cos(2pz)cos(2px))−0.4(cos(2px)+ cos(2py)+cos(2pz))
1.1.*(sin(2.*2.*pi.*x).*cos(2.*pi.*y).*sin(2.*pi.*z)+ sin(2.*2.*pi.*y).*cos(2.*pi.*z).*sin(2.*pi.*x)+sin(2.*2.*pi.*z).*cos(2.*pi.*x).*sin(2.*pi.*y))- 0.2.*(cos(2.*2.*pi.*x).*cos(2.*2.*pi.*y)+cos(2.*2.*pi.*y).*cos(2.*2.*pi.*z)+ cos(2.*2.*pi.*z).*cos(2.*2.*pi.*x))-0.4.*(cos(2.*2.*pi.*x)+cos(2.*2.*pi.*y)+ cos(2.*2.*pi.*z)) |
2π | 0.25 |
Q* |
(cos(px)-2cos(py))cos(pz)-sqrt(3)sin(pz)(cos(px-py)-cos(px))+cos(px-py)cos(pz)
(cos(2.*pi.*x)-2.*cos(2.*pi.*y)).*cos(2.*pi.*z)-sqrt(3).*sin(2.*pi.*z).*(cos(2.*pi.*(x-y))-cos(2.*pi.*x))+cos(2.*pi.*(x-y)).*cos(2.*pi.*z) |
2π | 0.25 |
W |
(cos(2px)cos(py)+cos(2py)cos(pz)+cos(px)cos(2pz))-(cos(px)cos(2py)+cos(py)cos(2pz)+cos(2px)cos(pz))
(cos(2.*2.*pi.*x).*cos(2.*pi.*y)+cos(2.*2.*pi.*y).*cos(2.*pi.*z)+ cos(2.*pi.*x).*cos(2.*2.*pi.*z))-(cos(2.*pi.*x).*cos(2.*2.*pi.*y)+ cos(2.*pi.*y).*cos(2.*2.*pi.*z)+cos(2.*2.*pi.*x).*cos(2.*pi.*z)) |
2π | 0.1 |
F |
cos(px) cos(py) cos(pz)
cos(2.*pi.*x).*cos(2.*pi.*y).*cos(2.*pi.*z) |
2π | 0.1 |
Double D |
(sin(2px)sin(2py)+sin(2py)sin(2pz)+sin(2pz)sin(2px))+cos(2px)cos(2py)cos(2pz)
(sin(2.*2.*pi.*x).*sin(2.*2.*pi.*y)+sin(2.*2.*pi.*y).*sin(2.*2.*pi.*z)+ sin(2.*2.*pi.*z).*sin(2.*2.*pi.*x))+cos(2.*2.*pi.*x).*cos(2.*2.*pi.*y).*cos(2.*2.*pi.*z)
Variante: cos(px)cos(py)+cos(py)cos(pz)+cos(px)cos(pz)+sin(2px)sin(2py)sin(2pz)
cos(2.*2.*pi.*x).*cos(2.*2.*pi.*y)+cos(2.*2.*pi.*y).*cos(2.*2.*pi.*z)+ cos(2.*2.*pi.*x).*cos(2.*2.*pi.*z)+sin(2.*2.*pi.*x).*sin(2.*2.*pi.*y).*sin(2.*2.*pi.*z) |
2π | 0.25 |